Considerations for starting combustion engines with AC machines
 
More details
Hide details
1
Universidad Tecnológica de Pereira. Colombia
 
 
Submission date: 2022-09-02
 
 
Final revision date: 2022-11-16
 
 
Acceptance date: 2022-11-21
 
 
Online publication date: 2022-12-01
 
 
Publication date: 2023-01-02
 
 
Corresponding author
Mauricio Monroy   

Universidad Tecnológica de Pereira
 
 
Diagnostyka 2023;24(1):2023102
 
KEYWORDS
TOPICS
ABSTRACT
To initiate its combustion cycles, internal combustion engines require a minimum rotational speed that can be given from several sources (muscular, electrical, pneumatic, among others). Advantages of initiating an ICE with an AC electrical machine is that it can integrate starter motor and generator in one device, provide a linear ramp of acceleration when starting, and assist the ICE in torque production. This article illustrates considerations for the design of a starting system with an AC electrical machine. Initially, criteria of torque, rotational speed and power requirements are analysed, considering resistances of compression, friction, and inertia of the slider-crank mechanism, as well as accessories, with a preliminary experimental validation. Also, types of three-phase AC electrical machines are put to comparison, as well as their associated electronic components needed for driving them in each case, concluding that AC induction machines require a complex 4-quadrant inverter. PM synchronous machines require a simpler inverter, but with highly specified power electronics components. The classical wound rotor machine requires the simplest inverter, with unidirectional power flow, less power transfer losses and less critical power electronics components. Finally, considerations for using of a battery assisted with supercapacitor as complementary DC power source are made.
 
REFERENCES (46)
1.
Barthe M. Rotative Engines. Typologies and alternative fuels. Motores rotativos. Tipologías y combustibles alternativos. Proyecto de final de carrera. Facultat de Náutica de Barcelona -UPC. 2009.
 
2.
Eide TI. Modelling and control of a pneumatic starting system for medium-speed gas engines. Norwegian University of Science and Technology. Department of Marine Technology. 2011. https://core.ac.uk/download/pd....
 
3.
Dziubiński M, Drozd A, Kordos P, Syta A. Diagnosing the automobile starting system. Combustion Engines. 2017;170(3):19-23. https://doi.org/10.19206/CE-20....
 
4.
Bogariz D. (Experimental validation of a three-phase alternator model (40V) for automotive application). Validación experimental de un modelo de alternador trifásico (40v) para automoción. Universitat Rovira I Virgili. Escuela Técnica Superior de Ingeniería. Departamento de ingeniería Electrónica Eléctrica y Automática. 2003.
 
5.
Romero CA, Rodríguez A, Monroy M. (Assembly and instrumentation of a didactic test bench for testing of starting of internal combustion engines). Ensamble e instrumentación de un banco didáctico para pruebas de arranque en motores de combustión interna. Revista UISIngenierías. 2020;19(3):37-48. https://doi.org/10.18273/revui....
 
6.
Robert Bosch GmbH. Starting systems. In: Robert Bosch GmbH (eds) Bosch Automotive Electrics and Automotive Electronics. Bosch Professional Automotive Information. Springer Vieweg, Wiesbaden. 2014. https://doi.org/10.1007/978-3-....
 
7.
Patil AB, Ranade NS. Computer Simulation of an I.C. Engine During Cranking by a Starter Motor. SAE Technical paper series. 1993:930626.
 
8.
Bonnick A, Newbold D. A practical approach to motor vehicle engineering and maintenance. 3rd. Ed. Taylor and Francis Group. 2017.
 
9.
Ma Q, Rajagopalan SSV, Yurkovich S, Guezennec Y. A High-Fidelity Starter Model for Engine Start Simulations. Proceedings of the American Control Conference. 2005.
 
10.
Laughton MA, Warne DA. Electrical Engineer's Reference Book. Sixteenth Edition. Newnes. 2003.
 
11.
Denton T. Automobile Electrical and Electronic Systems. 5th. Ed. Abingdon-on-Thames: Routledge. 2017.
 
12.
Kett PW. Motor Vehicle Science Part 2. Variable torque, force and work done (C8). Springer, Dordrecht. 1982. https://doi.org/10.1007/978-94....
 
13.
Neacșu DO. Automotive Power Systems. CRC Press. 2020.
 
14.
Hutcheon KF, Marks RL. Developments in starter motor application to diesel engines. Proc. Instn. Mech. Engrs. 1969-70. Vol. 184 Pr. 3A. Paper 13. Univ of Cincinnati.
 
15.
Averbukh M, Rivin B, Vinogradov J. On-Board Battery Condition Diagnostics Based on Mathematical Modeling of an Engine Starting System. SAE Technical paper series. 2007-01-1476. 2007 World Congress Detroit, Michigan April 16-19, 2007.
 
16.
DeBruin LA. Energy and Feasibility Analysis of Gasoline Engine Start/Stop Technology. The Ohio State University. 2013.
 
17.
Marchuk A. Kuharenok G. Petruchenko A. Successfull diesel cold start through proper pilot injection parameters selection. Robert Bosch Company. Belarussian National Technical University.
 
18.
Romero CA. (Fundamentals of construction and calculation of internal combustion machines). Fundamentos de construcción y cálculos de máquinas de combustión interna. Universidad Tecnológica de Pereira. 2002.
 
19.
Armas O. (Experimental Diagnostic of the combustion process in direct injection diesel engines). Diagnóstico experimental del proceso de combustión en motores diésel de inyección directa. Departamento de Máquinas y motores térmicos. Universidad Politécnica de Valencia. SPUPV-98.2207.
 
20.
Ferguson C, Kirkpatrick A. Internal combustion engines. Applied thermosciences. 3rd edition. Wiley. 2016.
 
21.
Kamil M, Rahman MM, Bakar RA. An integrated model for predicting engine friction losses in internal combustion engines. International Journal of Automotive and Mechanical Engineering (IJAME). 2013:P176,.
 
22.
Viorel IA, Szabó L, Löwenstein L, Ştet C. Integrated starter-generators for automotive application. Acta Electrotehnica. 2004;45(3).
 
23.
Henry R, Lequesne B, Chen S, Ronning J. Belt-Driven Starter-Generator for Future 42-Volt Systems. SAE Technical Paper 2001-01-0728, 2001, https://doi.org/10.4271/2001-0....
 
24.
Chapman SJ. Electric Machinery fundamentals. McGraw-Hill. 2012.
 
25.
Shuker ZS. Three-phase induction motor conversion to three-phase induction generator. Journal of Engineering and Development. 2015;19(5).
 
26.
Marathon Electric Generators. Primeline Induction Generator. www.marathonelectric.com. 2012. Regal-Beloit Corporation. SB317.
 
27.
Grachev PY, Strizhakova EV, Tabachinskiy AS. Starter-Generator Design and Dynamic Processes Simulation for HEVs. International Conference on Industrial Engineering, ICIE 2017. Procedia Engineering. 206:1877-7058. https://doi.org/10.1016/j.proe....
 
28.
Radwan-Pragłowska N, Wegiel T, Borkowski D. Modeling of axial flux permanent magnet generators. Energies. 2020;13:5741; https://doi.org/10.3390/en1321....
 
29.
Sadeghierad M, Darabi A. Lesani H, Monsef H. Design Analysis of High-Speed Axial-Flux Generator. American J. of Engineering and App. Sci. 2008;1(4): 312-317.
 
30.
Cathey JJ. Electric machines: Analysis and design applying MATLAB. McGraw-Hill. 2002.
 
31.
Blága C, Szabó N. Simulation and measurement of a voltage regulator of an automotive generator.16th International Power Electronics and Motion Control Conference and Exposition. Antaya. Turkey. 2014.
 
32.
Enache BA, Constantinescu LM, Lefter E. Modeling aspects of an electric starter system for an internal combustion engine. ECAI 2014. International Conference. 5th. Ed. Electronics, Computers and Artificial Intelligence. 2014. Bucharest. Romania.
 
33.
Simoes MG. Modeling a self-excited induction generator. Colorado School of Mines. Golden. Electrical Engineering Department. 2019. https://doi.org/10.25676/11124....
 
34.
Calin M, Helerea E. Temperature influence on magnetic characteristics of NdFeB permanent magnets. 2011 7th International symposium on advanced topics in electrical engineering (ATEE) IEEE. 2011.
 
35.
Lebkowski A. Temperature, overcharge and short-circuit studies of batteries used in electric vehicles. Przeglad Elektrotechniczny. Gdynia Maritime University, Department of Ship Automation. 2017. https://doi.org/10.15199/48.20....
 
36.
Cultura AB, Zalameh ZM. Modeling, evaluation and Simulation of a supercapacitor module for energy storage application. Proceedings of the International conference on computer information systems and industrial applications (CISIA). 2015. https://doi.org/10.2991/cisia-....
 
37.
Furukawa T. Capacitors for Internal Combustion Engine Starting with Green Technology DLCAP. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium. World Electric Vehicle Journal. 2009;3(2):233-237. https://doi.org/10.3390/wevj30....
 
38.
Kim S, Chou P. Energy harvesting with supercapacitor-based energy storage. In: Smart sensors and systems. Springer. 2015. https://doi.org/10.1007/978-3-....
 
39.
Rafik F, Gualous H, Gallay R, Karmous M. A Berthon. Contribution to dimensioning a pack of supercapacitors for 12V/42V application. U.S. Department of Energy. Office of Scientific and Technical Information. 2004. https://www.osti.gov/etdeweb/s....
 
40.
Dixon J. Three phase controlled rectifiers. department of electrical engineering. Pontificia Universidad Católica de Chile. 2007. https://doi.org/10.1016/B978-0....
 
41.
Subaru Industrial Products Co. Ltd. Engines EY series. https://www.subarupower-global....
 
42.
Subaru Industrial Products Co. Ltd. Engines EY series. Parts Manual. PUB-EP5657A Rev. 04/00. https://subarupower.com/media/....
 
43.
Kumbir V, Dostil P. Cupera J. Sabaliauskas A. Kinematic viscosity of four-stroke engine oils. Mendel University in Brno. Siauliai University. Technologijos Mochslai Mechanine Inzinerija. 2012. Jaunųjų mokslininkų darbai. Šiauliai : VšĮ Šiaulių universiteto leidykla. 2012;3(36):134-139.
 
44.
ABB Motors and Mechanical inc. Baldor Reliance. Product information packet. CDPWD3445. 1HP, 1750rpm, DC, 56C, 3435P, TEFC, F1.
 
45.
Wierzbicki S. Diagnosing microprocessor controlled systems. Polska Akademia Nauk, Teka Komisji Motoryzacji i Energetyki Rolnictwa, Tom VI, Lublin, 2000: 183-188.
 
46.
Gheorghiu V. Atkinson cycle and very high-pressure turbocharging: increasing internal combustion engine efficiency and power while reducing emissions. Hamburg University of Applied Sciences, Berliner Tor 21, Hamburg Germany, 2016.
 
eISSN:2449-5220
Journals System - logo
Scroll to top