Detection of faults in the asynchronous machine by the use of smart materials
 
More details
Hide details
1
Laboratory of studies and Development of Semiconductor and Dielectric Materials, LeDMaScD, University Amar Telidji of Laghouat, BP 37G route of Ghardaïa, Laghouat 03000, Algeria.
 
2
Materials Science and Informatics Laboratory, MSIL, Ziane Achour University of Djelfa, PO Box 3117 Road Moudjbara, 17000 Djelfa, Algeria
 
 
Submission date: 2018-02-10
 
 
Final revision date: 2018-07-07
 
 
Acceptance date: 2018-07-11
 
 
Online publication date: 2018-07-18
 
 
Publication date: 2018-07-18
 
 
Corresponding author
Amar Regaz   

Laboratory of studies and Development of Semiconductor and Dielectric Materials, LeDMaScD, University Amar Telidji of Laghouat, BP 37G route of Ghardaïa, Laghouat 03000, Algeria., city boutrifice blok 592/28 djelfa Algeria, 17000 Djelfa, Algeria
 
 
Diagnostyka 2018;19(3):43-54
 
KEYWORDS
TOPICS
ABSTRACT
This paper aimed with diagnosis of defects in asynchronous machine. The used method is based on the exploitation of the behavioural laws of magnetostrictive and piezoelectric materials, under harmonic regime, used in the construction of the asynchronous machine. Piezoelectric sensors are used both in the stator and in the rotor. The used one in the stator serves to detect the rupture at the stator windings and the one used in the rotor helps us to detect the rupture of the rotor bars. The produced electric potential in the terminals of piezoelectric sensor is due to the deformation generated by magnetic induction under the effect of magnetostriction. A finite element method (FEM) is selected to be the resolution numerical method. This method is used for modelling the asynchronous machine under anomaly conditions and non-load.
 
REFERENCES (28)
1.
Faiz J, Moosavi M. Eccentricity fault detection – From induction machines to DFIG-A review. Renewable and Sustainable Energy Reviews, 2016; 55: 169–179. https://doi.org/10.1016/j.rser....
 
2.
Thomson WT, Fenger M. Current signature analysis to detect induction motor faults. IEEE Ind. Appl. Mag. 2001; 7(4): 26-34.
 
3.
Kim J, Shin S, Bin Lee S, Gyftakis KN, Drif M, Cardoso JM. Power spectrum based detection of induction motor rotor faults for immunity to false alarms. Energy Convers. 2015; 30(3): 1123-1132. https://doi.org/10.1109/TEC.20....
 
4.
Rodriguez PVJ, Negrea M, Arkkio A. A simplified scheme for induction motor condition monitoring. Mech. Syst. Signal Process, 2008; 22(5): 1216-1236.
 
5.
Liu Z, Zhang X, Wei Y. Rotor faults diagnosis way for induction motors based on PQ transformation, IEEE Int, Conf. Control Autom. ICCA, 2008; 10(2): 1067-1071.
 
6.
Chattopadhyaya A, Sengupta S, Chattopadhyay S. Analysis of stator current of induction motor used in transport system at single phasing by measuring phase arigle, symmetrical components, skewness, kurtosis and harmonic distortion in park plane. IET Electr. Syst. Transp, 2014;4(1):1-8.
 
7.
Tavner PJ. Review of condition monitoring of rotating electrical machines. IET Electr. Power Appl, 2008; 2(4): 215-247.
 
8.
Ebrahimi BM, Faiz J. Diagnosis and performance analysis of three-phase permanent magnet synchronous motor with static, dynamic and mixed eccentricity. IET Electr. Power Appl, 2010; 4(1): 53-65.
 
9.
Kaikaa MY, Hadjami M, Khezzar A. Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine. IEEE Trans. Ind. Electron, 2014; 61(6): 2942-2942.
 
10.
Yang C. Screening of false induction motor fault alarms produced by axial air ducts based on the space harmonic induced current components, IEEE Trans. Ind. Electron, 2015; 62(3): 1803-1813. https://doi.org/10.1109/TIE.20....
 
11.
Lee S, Hong J, Bin Lee S, Wiedenbrug E, Teska M, Kim H. Evaluation of the influence of rotor axial air ducts on condition monitoring of induction motor. IEEE Energy conversion congress and exposition (ECCE), 2012: 3016-3023. https://doi.org/10.1109/ECCE.2....
 
12.
Yang C, Kang TJ, Hyun D, Bin A, Lee J, Antonino-Daviu JA. Reliable detection of induction motor rotor faults under the rotor axial air duct influence, IEEE Trans. Ind. Apl, 2014; 50(4): 2493-2502. https://doi.org/10.1109/TIA.20....
 
13.
Sadeghian A, Ye Z, Wu B. Online detection of broken rotor bars in induction motor by wavelet packet decomposition and artificial neural network, IEEE Trans. Instrum. Meas, 2009; 58(7): 2253-2263.
 
14.
Boughrara K, Takorabet N, Ibtiouen R, Touhami O, Dubas F. Analytical analysis of cage rotor induction motors in healthy, defective, and broken bars conditions. IEEE Trans. Magn, 2015; 51(2): 1–17. https://doi.org/10.1109/TMAG.2....
 
15.
Moses AJ. Effect of stress on the magnetic properties of grain-oriented silicon iron magnetized in various directions. IEEE Trans. Magn, 1981; 17(6): 2872–2874.
 
16.
Gourdin C, Hirsinger L, Barbier G, Billardon R. Experimental identification of the coupling between the anhysteretic magnetic and magnetostrictive behaviours. Journal of Magnetism and Magnetic Materials, 1998; 177(1): 201–202.
 
17.
Belahcen A. Magnetoelasticity, magnetic forces and magnetostriction in electrical machines. Ph. D, Helsinki University of Technology, 2004. Finlande.
 
18.
Schneider C, Richardson J. Biaxial magnetoelasticity in steels. Journal of Applied Physics, 1982; 53(11):8136–8138.
 
19.
Pearson J, Squire PT, Maylin MG, Gore JG. Biaxial stress effects on the magnetic properties of pure iron. IEEE Trans. Magn, 2000; 36(5): 3251–3253.
 
20.
Maurel V. Influence de l’état mécanique multiaxial induit par la découpe sur les propriétés d’usage des tôles magnétiques. Thèse de doctorat, Ecole Normale Supérieure de Cachan, 2002. France.
 
21.
Curie J, Curie P. Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes rendus de l’Académie des Sciences, 1880,91: 294–295.
 
22.
Curie J, Curie P. Sur l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes-rendus de l’Académie des Sciences, 1880; 91:383–387.
 
23.
Regaz A, Zegnini B, Mahi D, Boukezzi L. Static and harmonic behavior of piezoelectric beam bending actuators. Electrotechnica, Electronica, Automatica, (EEA), 2017; 65(4): 30-36.
 
24.
Regaz A, Boukezzi L, Zegnini B, Mahi D. Contribution to the study of piezoelectric beam bending actuator in harmonic mode. 5th International Conference on Electrical Engineering (ICEE-B), 2017:1-5. https://doi.org/10.1109/ICEE-B....
 
25.
Regaz A, Boukezzi L, Zegnini B, Mahi D. Contribution to the study of piezomagnetic materials. 4th International Conference on Electrical Engineering (ICEE-B), 2015: 1-4. https://doi.org/10.1109/INTEE.....
 
26.
Azoum K, Besbes M, Bouillaut MF. 3D FEM magnetostriction phenomena used coupled constitutive laws, International Journal of Applied Electromagnetic and Mechanics, 2004; 19: 367-371.
 
27.
Nguyen TT. Modeling with finite elements of magneto-electric composite materials, PhD thesis, University of Paris, 2011. (in French).
 
28.
Srinivasa Rao K, Srinivas G, Srinivas-Prasad MVVK, Srinivas Y, Shudheer B, Venkateswar Rao A. Design and simulation of MEMS based piezoelectric shear actuated beam. American J. Mater. Sci, 2012; 2(6):179-184. https://doi.org/10.5923/j.mate....
 
eISSN:2449-5220
Journals System - logo
Scroll to top