Directed hypergraph observers-based qualitative fault monitoring tasks
,
 
 
 
More details
Hide details
1
Ecole Nationale d'ingénieurs de tunis
 
2
Ecole d'ingénieurs de gabes tunis
 
 
Submission date: 2021-04-18
 
 
Final revision date: 2021-10-01
 
 
Acceptance date: 2021-11-22
 
 
Online publication date: 2021-11-24
 
 
Publication date: 2021-11-24
 
 
Corresponding author
Dhaou Garai   

Ecole Nationale d'ingénieurs de tunis
 
 
Diagnostyka 2021;22(4):67-76
 
KEYWORDS
TOPICS
ABSTRACT
To create a precise model structure and perform fault monitoring algorithms for a wide range of complex systems along with dynamic behavioural characteristics, the causal graph-based methods were considered herein. In this paper, a new scheme was devised based on fast fault detection mechanism relying on the Directed Hypergraph Observer model. The performance of the suggested pattern is illustrated by a case study including systems with single energy. Noting that the modern methods possess a large range of applications for the reliability and energy effectiveness analysis related to multi-energy systems. The Directed Hypergraph model architecture was exploited to generate the diagnostic condition based on a graphical observer.
 
REFERENCES (30)
1.
Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Springer Science & Business Media, 2005.
 
2.
Blanke M, Kinnaert M, Lunze J. Diagnosis and fault-tolerant control. Berlin: Springer, 2006.
 
3.
Serra R, Zanarini G. Complex systems and cognitive processes. Springer Science & Business Media, 2013.
 
4.
Patton RJ, Frank PM, Clark RN. Issues of fault diagnosis for dynamic systems. Springer Science & Business Media, 2013.
 
5.
Samantaray AK, Bouamama BO. Model-based process supervision: a bond graph approach. Springer Science & Business Media, 2008.
 
6.
Borutzky W. Bond graph model-based fault diagnosis of hybrid systems. Cham: Springer International Publishing, 2015.
 
7.
BERGE, Claude. Graphs and hypergraphs. 1973.
 
8.
Klein D, Manning CD. Parsing and hypergraphs. In : New developments in parsing technology. Springer, Dordrecht. 2004 :351-372.
 
9.
Ausiello G, Italiano, GF, Laura L, et al. Structure theorems for optimum hyperpaths in directed hypergraphs. In: International Symposium on Combinatorial Optimization. Springer, Berlin, Heidelberg. 2012:1-14.
 
10.
Gallo G, Longo G, Pallottino S, et al. Directed hypergraphs and applications. Discrete applied mathematics. 1993:42(2-3):177-201.
 
11.
Klamt S, Haus Utz-Uwe. Hypergraphs and cellular networks. PLoS Comput Biol, 2009; 5(5): e1000385.
 
12.
Gazdík I. Modelling systems by hypergraphs. Kybernetes. 2006.
 
13.
Adamski M, Tkacz J. Formal reasoning in logic design of reconfigurable controllers. IFAC Proceedings Volumes. 2012; 45(7):1-6.
 
14.
Khalil W, Merzouki R, Ould-Bouamama B. Hypergraph models for system of systems supervision design. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2012; 42(4):1005-1012. https://doi.org/10.1109/TSMCA.....
 
15.
Haffaf H. Hypergraph for system of systems modeling. Networking and Advanced Systems. 2015: 38.
 
16.
Abdesselam I, Haffaf H. Hypergraph reconfigurability analysis. IERI Procedia. 2014; 6:22-32.
 
17.
Kotulski L, Sędziwy A, Strug B. Heterogeneous graph grammars synchronization in CAD systems supported by hypergraph representations of buildings. Expert systems with applications. 2014; 41(4):990-998. https://doi.org/10.1016/j.eswa....
 
18.
Habel A, Kreowski HJ. Some structural aspects of hypergraph languages generated by hyperedge replacement. Annual Symposium on Theoretical Aspects of Computer Science. Springer, Berlin, Heidelberg, 1987:207-219.
 
19.
Minas M. Concepts and realization of a diagram editor generator based on hypergraph transformation. Science of Computer Programming. 2002;44(2): 157-180.
 
20.
Gomand J. Analyse de systèmes multi-actionneurs parallèles par une approche graphique causale-application a un processus électromécanique de positionnement rapide. 2008. Thèse de doctorat. Arts et Métiers ParisTech.
 
21.
Saoudi G, Harabi R, Abdelkrim MN. Robust fault detection based on bond graph UIO observer. International Journal of Digital Signals and Smart Systems. 2017;1(4):302-322.
 
22.
Ding SX. Advanced methods for fault diagnosis and fault-tolerant control. Springer Berlin Heidelberg. 2021.
 
23.
Wu Y, Zhao D, Liu S, Li, Y. Fault detection for linear discrete time-varying systems with multiplicative noise based on parity space method. ISA transactions. 2021. https://doi.org/10.1016/j.isat....
 
24.
Pan J, He W, Shi Y, Hou R, Zhu H. Uncertainty analysis based on non-parametric statistical modelling method for photovoltaic array output and its application in fault diagnosis. Solar Energy. 2021;225, 831-841.
 
25.
Vijay P, Tadé MO, Shao Z. Adaptive observer based approach for the fault diagnosis in solid oxide fuel cells. Journal of Process Control. 2019; 84, 101-114.
 
26.
Atitallah M, El Harabi R, Abdelkrim MN. Unknown input Hamiltonian observers-based fault detection and estimation. Systems, Automation, and Control. 2019: 177-196.
 
27.
Aboub A, El Harabi R, Abdelkrim MN. Causal ordering graph based observers for generating redundant relations. 17th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2020:1080-1085).
 
28.
Garai D, El Harabi R, Bacha F. A comparative study of Graphical tools for the Fault Monitoring using HBG and DBH Formalisms. 18th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE. 2021:124-130).
 
29.
Garai D, El Harabi R, Bacha F. Hamiltonian Bond Graph formalism for generating energetic redundant relations. 17th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE. 2020:1063-1068).
 
30.
Merahi F, Bouamama BO, Mekhilef S. Bond graph modeling, design and experimental validation of a photovoltaic/fuel cell/electrolyzer/battery hybrid power system. International Journal of Hydrogen Energy. 2021;46(47):24011-24027. https://doi.org/10.1016/j.ijhy....
 
eISSN:2449-5220
Journals System - logo
Scroll to top