The paper presents the issue of effectiveness of diagnosing imperfections of high performance industrial pumps.
At present, the most commonly applied diagnostic method for such machines is based on an analysis of the rotor vibration spectrum. Measurements of vibrations over time are not often performed on a continuous basis, they are rather carried out periodically, according to a defined inspection schedule. The reliability of this diagnostic method is based on an assumption that damage to a rotor does not occur rapidly, but it is a process stretched over a longer period of time resulting in a change of rotor movement dynamics. The most frequently occurring type of pump rotor damage is a fatigue crack of a shaft, the propagation of which actually proceeds in a finite period of time. However, there is also damage caused by a rapid pump load increase leading to stresses in rotor or disc sections, which exceed permissible values resulting from mechanical properties of material used to manufacture the rotor. Some imperfections are not related to rotor damage but result from the nature of cooperation between the pump and a pipeline connected thereto.
REFERENCES(16)
1.
Hamidi L, Piaud J, Massoud M. A study of crack influence on the modal characteristics of rotors. International Conference on Vibrations in Rotating Machinery, held at Bath, UK, Paper C432/066, 1992, 283-288.
Li X, Yao H, Ren Z, Wen B. Simulation of dynamic characteristics of faulty multi-span rotor system through FEA. 15th International Congress on Sound and Vibration, Daejeon, Korea, 2008.
Saravanan K, Sekhar A. Crack detection in a rotor by operational deflection shape and kurtosis using laser vibrometer measurements. Journal of Vibration and Control, 2012, 19 (8), 1227-1239.
Huang SS, Wu MC. In-Plane vibration and crack detection of a rotating shaft disk containing a transverse crack. Journal of Vibration and Acoustics,1998, 120, 551-555.
Luo YG, Ren ZH, Ma H, Yu T, Wen BC. Stability of periodic motion the rotor-bearing system with coupling faults of crack and rub-impact. Journal of Mechanical Science and Technology, 2007, 21( 6), 860-864.
Wan FY, Xu YQ, Li ST. Vibration analysis of cracked rotor sliding bearing system with rotor-stator rubbing by harmonic wavelet transform. Journal of Sound and Vibration, 2004, 271, 507-518.
Loya JA, Rubio L, Fernández-Sáez J. Natural frequencies for bending vibrations of Timoshenko cracked beams, Journal of Sound and Vibration, 2006, 290(3-5), 640-653.
Zachwieja J, Peszynski K. Service life of rotors under mechanical and thermal stress, 22nd International Conference Engineering Mechanics, Svratka, Czech Republic, 9 – 12 May, 2016.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.