The research aimed to assess the lubrication condition of rolling bearings dismounted from previously operated passenger car alternators. The tests measured the vibrations and evaluated the technical condition of the bearings based on selected estimators of the vibration acceleration signal subjected to earlier band-pass filtration in the high-frequency range of 8-10kHz. Next, the bearings have been disassembled, allowing inspection of the lubricant condition for each measured bearings and the visual assessment of individual components. Based on the test results, it was observed that the mean value and standard deviation of considered features of vibration acceleration signals in the 8-10kHz band might be helpful in the classification of the lubrication condition.
FUNDING
Described research is supported partly by scientific funds for statutory research in the Department of Fundamentals of Machinery Design of the Silesian University of Technology.
REFERENCES(20)
1.
Jakubek B, Barczewski R. The influence of kinematic viscosity of a lubricant on broadband rolling bearing vibrations in amplitude terms. Diagnostyka. 2019; 20(1):93–102 https://doi.org/10.29354/diag/....
Maru MM, Castillo RS, Padovese LR. Detection of solid contamination in rolling bearing operation through mechanical signature analysis. Proceedings of 12th International Congress on Sound and Vibration. Portugal. 2005.
Serrato R, Maru MM, Padovese LR. Effect of lubrication oil viscosity and contamination on the mechanical signatures of roller bearings. Proceedings of 12th International Congress on Sound and Vibration. Portugal. 2005.
Miettinen J, Andersson P, Wikstro V. Analysis of grease lubrication of a ball bearing using acoustic emission measurement. Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology. 2001. https://doi.org/10.1243/135065....
Cann PM, Doner J, Webster MN, Wikstrom V. Grease degradation in rolling element bearings. Tribology Transactions. 2001;399-404. https://doi.org/10.1080/104020....
De Laurentis N, Kadric A, Lugt P, Cann P. The influence of bearing grease composition on friction in rolling/sliding concentrated contacts. Tribology International. 2016;624-632. https://doi.org/10.1016/j.trib....
Miettinen J, Andersson P. Acoustic emission of rolling bearings lubricated with contaminated grease. Tribology International. 2000;33(11):777-787. https://doi.org/10.1016/S0301-....
Krol A, Fidali M, Jamrozik W. Comparison of selected point estimators of vibration signals for purposes of fault detection in rolling bearings. Vibrations in Physical Systems. 2020. https://doi.org/10.21008/j.086....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.