Methodology to knowledge discovery for fault diagnosis of hybrid dynamical systems: demonstration on two tanks system
 
More details
Hide details
1
Laboratoire d’Automatique et Informatique de Guelma (LAIG), Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algérie
 
2
Laboratory of Automatic Signal and Image Processing (LARATSI), National School of Engineers of Monastir, University of Monastir, 5019
 
3
Laboratory of Automatics and Informatics of Guelma LAIG
 
 
Submission date: 2020-07-26
 
 
Final revision date: 2020-11-12
 
 
Acceptance date: 2020-11-18
 
 
Online publication date: 2020-11-19
 
 
Publication date: 2020-11-19
 
 
Corresponding author
Mohammed Said Achbi   

Laboratory of Automatics and Informatics of Guelma LAIG
 
 
Diagnostyka 2020;21(4):115-123
 
KEYWORDS
TOPICS
ABSTRACT
The work carried out in this article concerns on the implementation off a diagnostic procedure for hybrid dynamic systems (HDS) whose objective is to guarantee the proper functioning of industrial installations. In this context, the main contributions of this work are summarized into three parts: The first part is oriented to the modeling approach dedicated to HDS. The aim is to find an adequate model combining both aspects (continuous and discrete dynamics). The use of Neuro-fuzzy networks makes it possible to build a model of the system and to follow all the modes without it being necessary to identify or discern them. The second part concerns the synthesis of a fault diagnostic technique based on a fuzzy inference system. A Neuro-Fuzzy network based is used for residual generation, while for the residual evaluation, a fuzzy reasoning model is used which can mainly introduce heuristic information into the analysis scheme and takes the appropriate decision regarding the actual behaviour of the process. The proposed approach is successfully applied to monitoring faults of a non-linear three-tank system and the results confirm the effectiveness of this approach.
REFERENCES (37)
1.
Kechida S, Cocquempot V. Méthodologies de diagnostic des systèmes dynamiques: Théories et exemples. EUE. 2012.
 
2.
Sayed-Mouchaweh M. Fault diagnosis of hybrid dynamic and complex systems. Springer International Publishing.
 
4.
Zouari T. Diagnostic des systèmes dynamiques hybrides à modes non linéaires. Doctoral dissertation, Lille. 2013.4. Achbi MS, Kechida S. Methodology for monitoring and diagnosing faults of hybrid dynamic systems: a case study on a desalination plant. Diagnostyka. 2020;21(1):27-33. https://doi.org/10.29354/diag/....
 
5.
Mhamdi L, Achbi MS, Dhouibi H, Kechida S. Diagnosis of hybrid systems through bond graph, observers and timed automata. Diagnostyka. 2020;21(3):113-125. https://doi.org/10.29354/diag/....
 
6.
Vasquez JW, Pérez-Zúñiga G, Sotomayor-Moriano J, Muñoz Y, Ospino A. New concept of safeprocess based on a fault detection methodology: Super Alarms. IFAC-PapersOnLine. 2019;52(14): 231-236. https://doi.org/10.1016/j.ifac....
 
7.
Gertler J. Fault Detection and Diagnosis in Engineering Systems. Routledge. 2017.
 
8.
Gara H, Saad KB. Fault diagnosis for hybrid systems based on a bank of linear observers and a discrete automaton. SN Applied Sciences. 2020;2(11):1-9. https://doi.org/10.1007/s42452....
 
9.
Khorasgani H, Biswas G. Mode detection and fault diagnosis in hybrid systems. In Fault Diagnosis of Dynamic Systems. 2019: 319-345.
 
10.
Cham Patel H, Shah V. Actuator and system component fault tolerant control using interval type-2 Takagi-Sugeno fuzzy controller for hybrid nonlinear process. International Journal of Hybrid Intelligent Systems. 2019;15(3):143-153. https://doi.org/10.3233/HIS-19....
 
11.
Patel HR, Shah VA. Integrated Design of model-based passive fault-tolerant control for nonlinear systems based on PID and fuzzy control. in soft computing: Theories and Applications. 2020;155-169. Springer, Singapore. https://doi.org/10.1007/978-98....
 
12.
Laui X. State estimation based inverse dynamic controller for hybrid system using artificial neural network. The International Journal of Analytical and Experimental Modal Analysis. 2020;12.
 
13.
Zhang X, Feng X, Mu Z, Wang Y. State and fault estimation for nonlinear recurrent neural network systems: Experimental testing on a three‐tank system. The Canadian Journal of Chemical Engineering. 2020. https://doi.org/10.1002/cjce.2....
 
14.
Medjmadj S. Méthodes et outils d’aide à la décision en vue de la commande tolérante aux défauts des entraînements électriques (Doctoral dissertation, Université Paris-Sud XI. 2015.
 
15.
Jain T, Yamé JJ, Sauter D. Active Fault-Tolerant Control Systems: A Behavioral System Theoretic Perspective. 2017;128.
 
16.
Fakhfakh O. surveillance et diagnostic par le flux d’ateliers de production cyclique. doctoral dissertation. 2015.
 
17.
Achbi MS. Commande tolérante aux défauts en utilisant les Réseaux de Neurones Artificiels et les Systèmes d’Inférence Floue. Thèse de doctorat. Université Mohamed Khider-Biskra. 2012.
 
18.
Lajmi F, Talmoudi AJ, Dhouibi H.Fault diagnosis of uncertain systems based on interval fuzzy PETRI net. Studies in Informatics and control. 2017;26(2):239-248.
 
19.
Pérez-Zuñiga G, Rivas-Perez R, Sotomayor-Moriano J, Sánchez-Zurita V. Fault Detection and Isolation System Based on Structural Analysis of an Industrial Seawater Reverse Osmosis Desalination Plant. Processes. 2020;8(9):1100. https://doi.org/10.3390/pr8091....
 
20.
Chanthery E, Sztyber A, Travé-Massuyès L, Pérez-Zuñiga CG. Process decomposition and test selection for distributed fault diagnosis. In 33th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems. 2020; 12144. https://doi.org/10.1007/978-3-....
 
21.
Kechida S, Ayab M, Mezdour H, Ayab A. Elaboration d’un système de supervision sous Yokogawa CS3000: Application à l’unité de production d’air de l’entreprise nationale Sonatrach. 2019.
 
22.
Ekanayake T, Dewasurendra D, Abeyratne S, Ma L, Yarlagadda P. Model-based fault diagnosis and prognosis of dynamic systems: a review. Procedia Manufacturing. 2019; 30: 435-442.
 
23.
Achbi MS, Kechida S, Modélisation et diagnostic des systèmes dynamiques hybrides par ANFIS: Application à un système à deux réservoirs. 1st international conference on Applied Automation and Industrial Diagnostics. ICAAID. Djelfa. 2015.
 
24.
Rahal MI, Bouamama BO, Meghebbar A. Hybrid bond graph for robust diagnosis to measurement uncertainties. 5th International Conference on Systems and Control (ICSC). 2016:439-444.
 
25.
Daher A. Default diagnosis and prognosis for a preventive and predictive maintenance. Application to a distillation column. Doctoral dissertation. 2018.
 
26.
Achbi MS, Kechida S, Hybrid dynamic systems fault diagnosis approach based on hybrid automata and ANFIS. 2nd international conference on Applied Automation and Industrial Diagnostics. ICAAID. Djelfa. 2017.
 
27.
Abdallah I, Gehin AL, Bouamama BO. Event driven hybrid bond graph for diagnosis. European Control Conference (ECC) 2016: 2353-2358.
 
28.
Takrouni A, Labidi I, Zanzouri N, Ksouri M. Robust diagnosis for hybrid dynamical systems. In 12th International Multi-Conference on Systems, Signals and Devices (SSD), Mahdia, Tunisia. 2015:16-19.
 
29.
Achbi MS, Kechida S. Fault tolerant control of reverse osmosis desalination plant with the application of SCADA system. 2nd international conference on Applied Automation and Industrial Diagnostics. ICAAID. Djelfa. 2017.
 
30.
Rivas-Perez R, Sotomayor-Moriano J, Pérez-Zuñiga G, Soto-Angles ME. Real-time implementation of an expert model predictive controller in a pilot-scale reverse osmosis plant for brackish and seawater desalination. Applied Sciences. 2019; 9(14): 2932. https://doi.org/10.3390/app914....
 
31.
Mahmoud MS; Fuzzy control, estimation and diagnosis. Saudi Arabia: Springer International. 2018.
 
32.
Achbi MS, Kechida S. Fault diagnosis of a reverse osmosis water desalination plant through a hybrid approach. International conference on Electronicsand new technologies. ICENT. M’sila. 2017.
 
33.
Daher. Default diagnosis and prognosis for a preventive and predictive maintenance. Application to a distillation column. 2018. PhD diss.
 
34.
Mhamdi L, Belkacem L, Dhouibi H, Abazi ZS. Using Hybrid Automata for Diagnosis of Hybrid Dynamical Systems. International Journal of Electrical & Computer Engineering. 2015;5(6):2088-8708.
 
35.
Mhamdi L, Dhouibi H, Simeu-Abazi Z, Liouane N. Modelling approach for discrete event systems through petri nets and timed automata. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT). 2013; 166-171.
 
36.
Belkacem L, Mhamdi L, Simeu-Abazi Z, Messaoud H, Gascard E. Diagnosis of hybrid dynamical systems through hybrid automata. IFAC-PapersOnLine, 2016;49(12):990-995.
 
37.
Vento J, Travé-Massuyès L, Puig V, Sarrate R. An incremental hybrid system diagnoser automaton enhanced by discernibility properties. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 2015;45(5):788-804.
 
eISSN:2449-5220
Journals System - logo
Scroll to top