Monitoring of helicopters swash-plate wear using the FAM-C diagnosis method
 
More details
Hide details
1
Instytut Techniczny Wojsk Lotniczych
 
 
Submission date: 2021-10-20
 
 
Final revision date: 2021-12-28
 
 
Acceptance date: 2022-01-14
 
 
Online publication date: 2022-01-19
 
 
Publication date: 2022-01-19
 
 
Corresponding author
Andrzej Jan Gębura   

Instytut Techniczny Wojsk Lotniczych
 
 
Diagnostyka 2022;23(1):2022104
 
KEYWORDS
TOPICS
ABSTRACT
Helicopter rotor dynamics (blade vibrations, ground resonance, influence of forward speed, etc.) play an important role in the wear and tear of the transmission system and power unit. Particularly fast wear of these components is to be expected in military helicopters in combat conditions, where the flight dynamics parameters are often exceeded. The FAM-C method developed at the Air Force Institute of Technology in Poland has been used to assess and monitor this wear. This method can be used to monitor damage to helicopter propulsion and transmission, where other "classical" methods are less effective due to a very complicated system of forces, variable as to the direction of amplitude and frequency, causing vibrations in closely spaced kinematic pairs. For this reason, vibroacoustic and thermal effects are created around these kinematic pairs, which interfere with each other. In a helicopter, the propulsion unit, including the power transmission unit, is at the same time the carrier unit. This has forced designers to construct a propulsion system with a much greater number of joints and bearing supports. This article presents the possibilities of the FAM-C method for monitoring of swash-plate main bearing wear.
REFERENCES (17)
1.
Ahrabian A, Looney D, Stanković L, Mandic D. Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Processing 2015;106:331–341. https://doi.org/10.1016/j.sigp....
 
2.
Carington IB, Wright JR, Cooper JE, Dimitriadis G. A comparison of blade tip timing data analysis methods. Procedings of the Instituation of Mechanical Engineers, Part G, Journal of Aerospace Engineering. 2001;215(5):301–312. https://doi.org/10.1243/095441....
 
3.
Cui L, Zhang Y, Zhang F, Zhang J and Lee S. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis. Journal of Sound and Vibration 2016;364:67-76. https://doi.org/10.1016/j.jsv.....
 
4.
Duan F, Fang Z, Sun Y, Ye S. Real time vibration measurement technique based on tip-timing for rotating blades. Opto-Electronic Engineering, 2005; 30(1):29-31, http//www.paper.edu.cn.
 
5.
Furmanek S, Kraszewski Z. Niezawodność łożysk tocznych. Wydawnictwa Przemysłowe WEMA, Warszawa 1989.
 
6.
Gębura A, Pietnoczko B, Tokarski T. Diagnostic testers operating on the basis of the FAM-C method. Diagnostyka 2016;17(2): 87-94.
 
7.
Gębura A, Stefaniuk M. Monitoring the helicopter transmission using the FAM C diagnostic method, Diagnostyka. 2017;18(2):75-85.
 
8.
Gębura A, Tokarski T. The monitoring of the bering nodes with excessive radial clearances using the FAM–C and FDM–A methods. Research Works of Air Force Institute of Technology. 2009;25:89–127.
 
9.
Gębura A. Dozorowanie stanu technicznego węzłów łożyskowych i wybranych elementów transmisji zespołu napędowego z wykorzystaniem modulacji częstotliwości napięcia wyjściowego. Wyd. ITWL, 2014.
 
10.
Gębura A. Four models of tribological wear of turbine jet engine bearings based on methods of electrical generator signal analysis. Diagnostyka 2017;18(1):59 66.
 
11.
Ioan D, Viorel P, Spiridon C. The influence of the misalignment on load distribution in angular contact ball bearings. Applied Mechanics and Materials 2014;658:299-304. https://doi.org/10.4028/www.sc....
 
12.
Mishra C, Samantaray AK, Chakraborty G, Zhang J, Lee S. Ball bearing defect models: A study of simulated and experimental fault signatures. Journal of Sound and Vibration 2017;400:86-112. https://doi.org/10.1016/j.jsv.....
 
13.
Padfield GD. Flying qualities: forms of degradation. helicopter flight dynamics: the theory and application of flying qualities and simulation modelling. Blackwell Publishing. 2007.
 
14.
Smagała AK. Kęcik K. Nonlinear model and simulation of a rolling bearing. CMES'19, IOP Conf. Series: Materials Science and Engineering 2019;710: 012006. https://doi.org/10.1088/1757-8....
 
15.
Warmiński J. Nieliniowe postacie drgań – układy dyskretne, Wydawnictwo Naukowe PWN, Warszawa 2011.
 
16.
Witoś M. Increasing the durability of turbine engines through active diagnostics and control (pol.: Zwiększenie żywotności silników turbinowych poprzez aktywne diagnozowanie i sterowanie). ITWL, Warszawa, 2010: https://doi.org/10.13140/RG.2.....
 
17.
Żurek J. Żywotność śmigłowców. ITWL, Warszawa 2006.
 
eISSN:2449-5220
Journals System - logo
Scroll to top