Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller
 
More details
Hide details
1
Electrical Engineering Department, Faculty of Technology, University Mohamed Boudiaf of M’sila, Algeria
 
2
LGE Research Laboratory of M’sila, Algeria
 
 
Submission date: 2023-02-22
 
 
Final revision date: 2023-04-26
 
 
Acceptance date: 2023-05-24
 
 
Online publication date: 2023-06-28
 
 
Publication date: 2023-06-28
 
 
Corresponding author
Abdelghafour Herizi   

Electrical Engineering Department, Faculty of Technology, University Mohamed Boudiaf of M’sila
 
 
Diagnostyka 2023;24(3):2023301
 
KEYWORDS
TOPICS
ABSTRACT
The control of the doubly-fed induction motor is a complex operation because of this motor characterised by a non-linear multivariable dynamics, having settings that change over time and a significant link between the mechanical component and magnetic behavior (flux) (speed and couple). This article then proposes a new strategy of a robust control of this motor, which is decoupled due to the stator flux’s direction. The proposed control is integrated with the backstepping control which based on Lyapunov theory; this approach consists in constructively designing a control law of nonlinear systems by considering some state variables as being virtual commands, and the important branch of artificial intelligence type-2 fuzzy logic. The hybrid control backstepping-fuzzy logic consists in replacing the regulators applied to the backstepping control by regulators based on type-2 fuzzy logic. This control will be evaluated by numerous simulations where there is a parametric and non-parametric variation.
 
REFERENCES (24)
1.
Vicatos MS, Tegopoulos AJ. A doubly-fed induction machine differential drive model for automobiles. IEEE Transactions on Energy Conversion 2003; 18(2): 225-230. https://doi.org/10.1109/TEC.20....
 
2.
Holdsworth L, Wu XG, Ekanayake JB, Jenkins N. Comparison of fixed speed and doubly fed induction wind turbines during power system disturbances. IEE Proceedings - Generation, Transmission and Distribution 2003;150(3):343-352. https://doi.org/10.1049/ip-gtd....
 
3.
Herizi A, Bouguerra A, Rouabhi R. Hybrid type-2 fuzzy sliding mode control of a doubly-fed induction machine (DFIM). AMSE Journals-IETA Publication, Advances in Modelling and Analysis C 2019; 74(2-4): 37-46. https://doi.org/10.18280/ama_c....
 
4.
El Ouanjli N, Motahhir S, Derouich A, El Ghzizal A, Chebabhi A, Taoussi M. Improved DTC strategy of doubly fed induction motor using fuzzy logic controller. Energy Reports 2019; 5: 271-279. https://doi.org/10.1016/j.egyr....
 
5.
Leonhard W. Control of electrical drives. Springer-Verlag Berlin Heidelberg, 3rd edition, New York 2001.
 
6.
Pyrhonen J, Hrabovcova V, Semken RS. Electrical machine drives control: an introduction. John Wiley & Sons Ltd 2016, First edition.
 
7.
Li S, Yu X, Fridman L, Man Z, Wang X. Advances in variable structure systems and sliding mode control: theory and applications. Springer International Publishing AG 2018.
 
8.
Derbel N, Ghommam J, Zhu Q. Applications of sliding mode control. Springer Science+Business Media Singapore 2017.
 
9.
Krstic M, Kanellakopoulos I, Kokotovic PV. Nonlinear and adaptive control design. John Wiley & Sons, Inc. 1995.
 
10.
Kokotovic PV. The joy of feedback: nonlinear and adaptive. IEEE Control systems Magazine 1992; 12(3): 7-17. https://doi.org/10.1109/37.165....
 
11.
Chaouch S, Herizi A, Serrai H, Nait Said M. Lyapunov and backstepping control design of induction motor system. 4th International Multi-Conference on Systems, Signals & Devices, Hammamet, Tunisia 2007.
 
12.
El Azzaoui M, Mahmoudi H, Ed-dahmani C. Backstepping control of a doubly fed induction generator integrated to wind power system. International Conference on Electrical and Information Technologies, Tangier, Morocco 2016.
 
13.
Bounar N, Boulkroune A, Boudjema F, M’Saad M, Farza M. Adaptive fuzzy vector control for a doubly-fed induction motor. Neurocomputing 2015;151(2): 756-769. https://doi.org/10.1016/j.neuc....
 
14.
Dualibe C, Verleysen M. Jespers PGA. Design of analog fuzzy logic controllers in CMOS technologies. Kluwer Academic Publishers, New York 2023.
 
15.
Lowen R, Verschoren A. Foundations of generic optimization. Volume 2: applications of fuzzy control, genetic algorithms and neural networks. Springer 2008.
 
16.
Loukal K, Benalia L. Type-2 fuzzy logic control of a doubly-fed induction machine (DFIM). IAES International Journal of Artificial Intelligence (IJ-AI) 2015;4(4):139-152. https://doi.org/10.11591/ijai.....
 
17.
Herizi A, Bouguerra A, Rouabhi R. Backstepping control of a doubly-fed induction machine based on fuzzy controller. European Journal of Electrical Engineering 2018;20(5-6):645-657. http://dx.doi.org/10.3166/ejee....
 
18.
Herizi A, Rouabhi R, Zemmit A. Comparative study of the performance of a sliding, sliding-fuzzy type 1 and a sliding-fuzzy type 2 control of a permanent magnet synchronous machine. Przegląd Elektrotechniczny 2022;98(11):21-29. https://doi.org/10.15199/48.20....
 
19.
Castillo O, Melin P. A review on the design and optimization of interval type-2 fuzzy controllers. Applied Soft Computing 2012;12(4):1267-1278. https://doi.org/10.1016/j.asoc....
 
20.
Juan R, Castillo O, Melin P, Díaz AR. A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Information Sciences 2009; 179(13): 2175-2193. https://doi.org/10.1016/j.ins.....
 
21.
Castillo O, Marroquín RM, Melin P, Valdez F, Soria J. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Information Sciences 2012;192:19-38. https://doi.org/10.1016/j.ins.....
 
22.
Liang Q, Mendel JM. Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems 2000;8(5):535-550. https://doi.org/10.1109/91.873....
 
23.
Mendel JM, John RI, Liu F. Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems 2006;14(6):808-818. https://doi.org/10.1109/TFUZZ.....
 
24.
Mendel J. Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice-Hall 2001.
 
eISSN:2449-5220
Journals System - logo
Scroll to top