The study of Arduino Uno feasibility for DAQ purposes
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics
 
2
Gdansk University of Technology, Faculty of Mechanical Engineering
 
3
University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, School of Medicine, Collegium Medicum
 
 
Submission date: 2019-02-12
 
 
Final revision date: 2019-05-05
 
 
Acceptance date: 2019-05-06
 
 
Online publication date: 2019-05-07
 
 
Publication date: 2019-05-07
 
 
Corresponding author
Szymon Nitkiewicz   

University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, School of Medicine, Collegium Medicum
 
 
Diagnostyka 2019;20(2):33-48
 
KEYWORDS
TOPICS
ABSTRACT
Using microcontroller systems becomes a routine in various measurement and control tasks. Their wide availability together with a huge potential of extending their functionality by additional modules allows developing advanced measuring and monitoring systems by non-specialists. However, using popular example codes often leads the user to pass over or not to be aware of the limitations of the system and drawing too far-reaching conclusions on the basis of incorrectly performed measurements This paper deals with the problem of choosing the right method for performing measurements using an acquisition system based on the budget Arduino UNO solution. The main assumption was to use the standard, widely available Arduino libraries. The work focuses on the scenario when data should be subject to time and frequency analysis in the later processing. The operating limits of the device were also determined depending on the data transmission method used.
REFERENCES (30)
1.
Chen YC, Shen HY, Chen HY, Hsu CH. Low Cost Arduino DAQ Development and Implementation on an Android App for Power Frequency Measurement, 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi'an, 2016:99 102. https://doi.org/10.1109/IS3C.2....
 
2.
González A, Olazagoitia JL, Vinolas J. A Low-Cost Data Acquisition System for Automobile Dynamics Applications. Sensors, 2018;18(2): 366. https://doi.org/10.3390/s18020....
 
3.
Jaskuła M, Łazoryszczak M, Peryt S. Fast MEMS application prototyping using Arduino/LabView pair. Meas. Autom. Monit., 2015; 61(12).
 
4.
Carre A, Williamson T. Design and validation of a low cost indoor environment quality data logger. Energy Build., 2018;158:1751–1761 https://doi.org/10.1016/j.enbu....
 
5.
Zalabarria U, Irigoyen E, Martínez R, ArechaldeJ. Acquisition and Fuzzy Processing of Physiological Signals to Obtain Human Stress Level Using Low Cost Portable Hardware, Advances in Intelligent Systems and Computing, 2018; 649: 68–78. https://doi.org/10.1007/978-3-....
 
6.
Corbellini S, Vallan A. Arduino-based portable system for bioelectrical impedance measurement. IEEE MeMeA 2014 - IEEE International Symposium on Medical Measurements and Applications, Proceedings, 2014:1–5. https://doi.org/10.1109/MeMeA.....
 
7.
What is Arduino? [Online]. Available: https://www.arduino.cc/en/Guid.... [Accessed: 20-Apr-2017].
 
8.
Arduino, Compare board specs. 2017. [Online]. Available: https://www.arduino.cc/en/Prod.... [Accessed: 14-Apr-2017].
 
9.
Galewski MA. STM32: Applications and exercises in C language, in Polish. Wydawnictwo BTC, 2011.
 
10.
Smith SW. Digital signal processing: a practical guide for engineers and scientists. Newnes, 2003.
 
11.
Greiman A. Arduino FAT16/FAT32 Library. 2017-04-26, 2017. [Online]. Available: https://github.com/greiman/SdF.... [Accessed: 23-Aug-2017].
 
12.
Miesowicz K, Staszewski WJ, Korbiel T. Analysis of Barkhausen noise using wavelet-based fractal signal processing for fatigue crack detection. International Journal of Fatigue, 2016; 83:109–116. https://doi.org/10.1016/j.ijfa....
 
13.
Moreno JC, Sánchez AM, Baños A. Recent Advances in Circuits and Systems, no. Csc. WSEAS Press, 1998.
 
14.
Barański R. Sound level meter as software application. Acta Phys. Pol. A, 2014;125(4A): 66–70, https://doi.org/10.12693/APhys....
 
15.
Nowoświat A, Olechowska M. Fast estimation of speech transmission index using the reverberation time. Appl. Acoust., 2016; 102:55–61. https://doi.org/10.1016/j.apac....
 
16.
Konior M, Klaczynski M, Wszolek W. Reduction of speech signal deformation in patients after nasal septum surgery (septolplasty). Acta Phys. Pol. A, 2011; 119(6A):1000–1004. https://doi.org/10.12693/APhys....
 
17.
Ozga A. Scientific ideas included in the concepts of bioacoustics, acoustic ecology, ecoacoustics, soundscape ecology, and vibroacoustics. Arch Acoust 2017; 42 :415–21. https://doi.org/10.1515/aoa-20....
 
18.
Barański R, Grzeczka A. Simply and low coast electromyography signal amplifier. Diagnostyka. 2017;18(4):69-77.
 
19.
Barański R, Kozupa A. Hand grip-EMG muscle response. Acta Phys Pol A 2014;125:A-7-A-10. https://doi.org/10.12693/APhys....
 
20.
Listewnik K, Grzeczka G, Klaczynski M, Cioch W. An on-line diagnostics application for evaluation of machine vibration based on standard ISO 10816-1. vol. 17. JVE International Ltd.; 2015.
 
21.
Atmel Corporation, AVR121: Enhancing ADC resolution by oversampling. 2005.
 
22.
Gammon N. “millis() overflow ... a bad thing?” 2013-08-26, 2013. [Online]. Available: http://www.gammon.com.au/milli... [Accessed: 23-Aug-2017].
 
23.
Arduino, Arduino: micros(), 2017. [Online]. Available: https://www.arduino.cc/en/Refe.... [Accessed: 23-Aug-2017].
 
24.
Eli JM. Examination of the Arduino micros() Function | µC eXperiment, 2012-03-17, 2012. [Online]. Available: https://ucexperiment.wordpress.... [Accessed: 23-Aug-2017].
 
25.
Gammon N. ADC conversion on the Arduino (analogRead), 2015-03-17, 2015. [Online]. Available: https://www.gammon.com.au/adc [Accessed: 09-Jun-2017].
 
26.
Atmel, ATmega48A/PA/88A/PA/168A/PA/328/P DataSheet, AVR Microcontrollers, p. 660, 2015.
 
27.
Atmel Corporation, ATmega328/P. 2016.
 
28.
Gammon N. Interrupts, 2012-01-08, 2012. [Online]. Available: http://www.gammon.com.au/inter... [Accessed: 23-Aug-2017].
 
29.
Gammon N. Timers and counters. 2012-01-17, 2012. [Online]. Available: https://www.gammon.com.au/time.... [Accessed: 23-Oct-2017].
 
30.
Atmel, AVR120 : Characterization and Calibration of the ADC on an AVR Microcontrollers Application Note. 2006:. 1–15.
 
eISSN:2449-5220
Journals System - logo
Scroll to top