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Abstract 

Some aspects are discussed concerning the uncertainty causes in risk assessment techniques of industrial 

interest. Particular attention has been paid to the evaluation of the effect of uncertainty of reliability data of 

devices and instruments to be used in process plants on the evaluation of the occurrence frequency of the top 

event. The influence of measuring equipment, whose contribution to the whole uncertainty appears in some 

cases very important, has been analysed with reference to both operative and environmental aspects. 

 

NOMENCLATURE 

n: number of failures recorded in the test period T 

m: mean life [h] 

    : maximum likelihood estimate of the mean life 

[h] 

f: degrees of freedom 

T: test period [h] 

(1 - ): confidence level 

L: lower limit of the confidence interval of        

ratio 

U: upper limit of the confidence interval of         
ratio 

: complement to unity of confidence level 

: maximum likelihood estimate of failure rate [h-1] 

: confidence interval of failure rate [h-1] 

%: 100 ∙  /  

μ: rate of repair 

Q(t): unavailability function 

P(t): probability at time t 

TIC: Temperature Indicator and Control 

LIC: Level Indicator and Control 

 

SUFFIXES 

            : referring to             ratio 

a: referring to state a 

b: referring to state b 

T: referring to TIC 

L: referring to LIC 

min: referring to lower limit of the confidence 

interval. 

max: referring to upper limit of confidence interval. 

 

1. INTRODUCTION  
 

Risk evaluation in industrial applications is a 

topic, which appears to be more and more 

important for many reasons, involving different 

aspects. In fact, achieving a “tolerable” risk level 

involves technical, economic, socio-political and 

even moral considerations [1] and consequences of 

a reliable and quantitative risk evaluation influence 

industrial operation in different contexts, which are 

all of very remarkable economic relevance. 

If just some aspects are considered, it is to be 

noticed that: 

 quantitative risk analysis allows the 

identification of events, which are the most 

likely to occur among the accidents, which are 

very important, if the effects on the human 

health and safety and the damages to the 

environment are taken into account. Based on 

this information, the design of  Safety 

Instrumented Systems (SIS) could be strongly 

improved and requirements of safety 

management Standards and Rules [2] better 

fulfilled; 

 law requirements are more and more stringent, 

which require to define the occurrence 

probability for hazardous events in order to set 

safety and emergency plans and procedures [3]. 

They also define social and town-planning 

limitations, depending on quantitative 

evaluation of occurrence probability of 

industrial accident and on the relevance of the 

event, whose effects are considered; 

 the capability is improved of setting programs 

of plant predictive maintenance, effective from 

both a production and cost point of view [4]. 

It has to be pointed out that many consolidated 

approaches have been set for risk analysis of 

complexes systems. 

The most diffused approach is based on fault 

tree analysis, [5-11]. 

Particular situations can be better studied by 

means of other techniques based on Markov 

diagrams [5, 6, 8, 9, 11, 12], GO methodology [11], 

[13] and Montecarlo simulation [11, 14]. 

Anyway, even though these topics have been 

deeply studied, many aspects have to be 

investigated, if reliable and accurate data should be 
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obtained, with reference to all steps of the 

evaluation procedure. Among the most noteworthy 

aspects: the definition and the identification of 

possible faults, the suitable modelling of the 

process plant and of the component behaviour for 

accident prevention, the reliability data availability 

and the data processing [15].  

Furthermore, whichever method is used, some 

common problems arise, summarized as in the 

following: 

 difficulty of completely modelling the 

production line behaviour from a safety point of 

view, so that simplifying hypotheses are then to 

be assumed; 

 incident common causes quantification; 

 evaluation of real working conditions of 

components and apparatuses; 

 incomplete availability of data with reference to 

specific production lines; 

 data accuracy, with reference to the failure rates 

of single components to be considered in risk 

analysis. 

All these aspects are important, so that a 

remarkable and prudential attention should be 

devoted to the use of prediction activity, but a 

particular care should be paid, among all these 

topics, in fixing the failure rate data of different 

components, because they constitute the basis of 

evaluation, whichever method of evaluation is 

chosen. 

Furthermore even though failure databases are 

used, which have a very extended data number, as 

in case of data bases used for petrol chemical 

applications, in most cases evaluation could be 

based on a very few data, so that the prediction 

confidence level is strongly affected. Further 

problems arise, if the effective working conditions 

in particular applications have to be considered, 

because databases information is normally used for 

risk evaluation also in plants of different types. 

Therefore, correct “data mining” is an important 

aspect of risk analysis. 

These problems are emphasized, if measuring 

equipment data are considered, due to the generally 

reduced number of data, which are available, even 

though measuring instruments of pressure, of 

temperature, of flow rate and other thermo-

mechanical quantities are an important percentage 

of the components to be considered.  In fact, 

generally, a reduced number of failures is detected, 

so that reliability evaluation is difficult to be carried 

out. 

Furthermore, if the contribution to the global 

risk of measuring instruments is considered, 

particular attention should be paid to the effect of 

environmental conditions on the correct behaviour 

of instrumentation; in fact data are often available 

for apparatuses, which work in quite different 

measuring conditions. Therefore, in many cases, the 

reliability of data concerning failure rate of 

different sensors used for production line control 

and safety is unsatisfactory. 

The definition of fault conditions for measuring 

equipment is strictly connected to the above aspect, 

which is a further contribution to uncertainty to be 

estimated for measuring apparatuses. It is important 

to notice that this problem should be studied taking 

into account requirements for correct working of 

instrumentation, especially in contexts based on 

quality, environmental, safety and/or integrated 

management systems [16].  

Taking in mind the above considerations, the 

aim of this paper is to analyse quantitatively some 

aspects, on which the accuracy of computation of 

top event frequency depends.  

Different steps of the procedure will be studied:  

 the evaluation method of the uncertainty of data, 

which are generally available, referring to both 

literature information and/or high level 

databases for maintenance and risk analysis;  

 the aspects related to measurement equipment, 

in order to get information on the confidence to 

be attributed to failure rate predictions, in 

comparison with data concerning different 

components, like pumps, actuators, motors and 

so on. 

The methodology, which has been used to 

evaluate the uncertainty of failure rate evaluation of 

different sensors and measuring system will be 

described and the confidence level of reliability 

predictions discussed, from an operating point of 

view. Different computation approaches, which are 

most diffuse in practical applications will be used; 

traditional techniques will be discussed, being the 

attention focused at this step on accuracy evaluation 

depending on other aspects. 

Results with reference to different type elements 

will be analysed, in order to obtain interesting 

information to improve maintenance and risk 

assessment activity and prediction.  

 

2. UNCERTAINTY CAUSES IN RISK 

ANALYSIS METHODOLOGY  

 

The aim of this study is to evaluate the whole 

uncertainty of the estimated occurrence frequency 

of top events in industrial plants for safety 

applications. 

The final uncertainty of data concerning the 

occurrence frequency of the top events obviously 

depends on different causes. 

The main contributions are as in the following: 

 the risk modelling method and the assumed 

simplifying hypotheses,  

 the uncertainty of data which are generally 

available,  

 the actual working conditions,  

 the type of components to be taken into account.  

This section will stress some aspects concerning 

the risk evaluation procedure. 
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2.1. Risk modelling methodologies 

The most widely used method for qualitative 

and quantitative hazard assessment is the fault tree 

[6-11]; in some countries, law itself suggests it as 

hazard evaluation technique. 

A fault tree is a graphical representation of the 

logical relations between a particular system 

accident or other undesired event, the top event, and 

primary cause events. 

To apply the fault tree method, the following 

conditions have to be verified: 

 The faults are of binary nature, namely a 

component works or does not work.  

 The transition from the working state to the 

failure one is instantaneous. 

 The failure rate is constant (components without 

memory).  

 The repair rate is constant too.  

 The failure rate does not change after every 

repair.  

 The fault tree and repair tree are equivalent, 

namely, if a failure produces an effect on some 

events of upper level, the corresponding repair 

restores initial conditions. 

A fault tree is essentially a simplified 

representation of a process system, which is 

generally very complex. Much work on fault tree 

methodology is concerned with correcting the 

oversimplifications [9].  

In some particular cases sophisticated and less 

common techniques are used: Markov diagrams [5], 

[6, 8, 9, 11, 12], GO methodology [11, 13] and 

Montecarlo simulation [5, 6, 14]. 

Among these the Markov technique is becoming 

more and more widespread for the calculation of 

the unavailability of repairable systems. This 

technique is very effective, to analyze systems 

where the sequence of failure is important. Markov 

modeling can also be applied to the analysis of 

common cause failures, standby redundancies, and 

state-dependent failure rates. For these applications, 

the Markov process is taken as a discrete state, 

continuous-time model. For the Markov technique, 

as well as for the fault tree analysis, assumptions 

are made concerning the transition rate from a 

given state to another, that is the same at all times 

in the past and future. The main drawback of this 

technique is that for complex trees it can become 

unmanageable, due to the number of differential 

equations to be solved; in these cases, even though 

simplifying methods are used, a proper description 

of states and transitions becomes a problem. 

Anyway, in most cases a combination of fault 

tree and Markov model appears as an effective 

approach and will be used in this paper. 

 
2.2. Confidence interval 

Due to a finite data number of components 

under observation, of failures registered and of 

limited surveillance periods, the failure rate 

estimates are affected by uncertainty, which can be 

expressed in terms of intervals, corresponding to a 

set confidence level. 

These intervals are estimated according to 

literature indications [5, 17, 18], using information 

collected about failures of components. 

Computation is carried on, by assuming 

constant failure rate, , and an exponential 

distribution of the reliability function, which 

provides the probability of surviving till a time of 

interest; this is a typical assumption in the fault tree 

approach. 

Let is life time estimation: 

                                                          (1) 

 

 
and: 

 

      (2) 

                               

                               (3) 
 

the freedom degrees. 

For a time-terminated test, the lower, L, and upper, 

U, limits of interval range for the             ratio, 

when a (1 - ) confidence level is set, can be 

computed by means of the following relationships:  

 

 

             (4) 

 

 

     

                          (5) 

 

 

where      distribution values are obtained from 

standard tables. 

 

2.3. Failure rate data 

Whatever method is used, it needs experimental 

observations, referring to the plant components 

behavior and therefore the problem of an effective 

failure data retrieval arises in any case. 

Typical data sources for risk analysis are 

literature data or databases, which are typically 

used in industrial studies, also for plant predictive 

maintenance planning. 

Tables 1 and 2 show a summary of fault data 

concerning different type of transducers 

(temperature, pressure, level and flow transducers) 

as taken from a high level very updated database, 

OREDA (Offshore Reliability Data), often 

mentioned also in literature references [6, 7] and 

literature data in the chemical industry [5, 8]. 

Remarkable differences arise by comparing data 

of different sources; therefore, choosing a suitable 

source appears a very important task. Some 

differences can be explained, if it is taken into 

account that some literature data [5, 8] refers to a 

previous period, with a poorer instrumentation, due 
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to the natural technological progress. Further, 

industrial plants are not the same: data refer to 

normal instruments of commercial level in process 

industries; in other applications, where higher 

instrument costs are acceptable, failure rate 

decreases. 

This comparison suggests some more causes of 

uncertainty of reliability data due to the use of 

information often referring to different plants, 

different and unknown environmental conditions; 

this aspect strongly influence accuracy of failure 

rate computation and therefore top event occurrence 

frequency evaluation, in particular with reference to 

measuring devices, as it will be shown in the 

following. 

Further, if measuring instruments are referred 

to, some more aspects should be considered, with 

reference to fault definition and identification.  

Typically, both “performance fault” and 

“condition fault” are taken into account, meaning 

that requested performance is not achieved. In the 

former case, this default is due to a measuring error 

or to a measurement uncertainty not adequate to the 

process control and safety requirements, in the 

latter, a fault condition occurs due to electrical or 

mechanical problems of the measuring apparatus. 

 
Table 1. Failure rate data from OREDA. 

Components 
N. of 

units 

N. of 

faults 

Mean 

surveillance 

interval  

[h] 

Failure rate 

(10-5) [h-1] 

Temperature 

transducers 
50 10 35000 0.57 

Pressure 

transducers 
300 150 30000 1.7 

Level 

transducers 
150 100 30000 2.2 

Flow 

transducers 
100 100 35000 2.9 

 
Table 2. Failure rate data in the chemical industry [5, 8]. 

Components 
N. of 

units 

N. of 

faults 

Mean 

surveillance 

interval  

[h] 

Failure rate 

(10-5) [h-1] 

Pressure 

measurement 
233 124 3305 16 

Flow 

measurement 
1942 1069 4253 13 

Level 

measurement 
421 327 4015 19 

Temperature 

measurement 

(excluding 

pyrometers) 

2579 425 4161 4.0 

 

If a management system for quality [19] 

environmental [20] and for safety [2] is set, this 

scenario obviously allows to reduce fault number, 

as an effect of procedures which have to be 

realized; the prediction capability is also improved 

due to larger and better information concerning 

plant components and instrumentation, in 

particular. 

Anyway, sensors and transducers fault 

definition, with reference to a certificated quality 

context, is a topic, which needs a deeper study. 

 

3. RESULTS 

 

The above-described methodology for 

confidence intervals calculation has been applied to 

some data from the OREDA database. 

The computation refers to both transducers and 

mechanical components, whose incorrect behaviour 

is very often basis event in fault trees for industrial 

hazard analysis, carried on for plants having a risk 

of relevant accidents. 

Transducers to be examined are in general 

mechanical and thermal measuring equipment for 

process control, like temperature, pressure, level 

and flow rate transducers and transmitters; data 

referring to motors and pumps have also been 

considered and analysed for comparison purposes.  

The extent of confidence intervals depends on 

failure number collected, which in turn is bound up 

with the components under observation and the 

surveillance interval.  

The problem of a reduced number of data 

usually is a problem more important for transducers 

than for mechanical and electrical equipment like 

motors, pump, actuators and so on. In fact, 

measurement equipment, which are very important 

for process productivity, reliability and human and 

environment safety, are very reliable themselves, so 

that a very few data regarding their fault is in 

general available.  

The results of a preliminary analysis are 

summarized in Table 3, confirming the above 

consideration. 

 
Table 3.  and% parameters data for measuring 

instruments, pumps and motors. 

Components 
N. of 

units 

N. of 

faults 

Mean 

surveillance 

interval 

[h] 

Failure 

rate  

(10-5)    

[h-1] 

 % 

Instruments 

 

Temperature 

transducers 

 

Pressure 

transducers 

 

Level 

transducers 

 

Flow 

transducers 

 

 

50 

 

 

300 

 

 

150 

 

 

100 

 

 

10 

 

 

150 

 

 

100 

 

 

100 

 

 

35000 

 

 

30000 

 

 

30000 

 

 

35000 

 

 

0.57 

 

 

1.7 

 

 

2.2 

 

 

2.9 

 

 

115

% 

 

28% 

 

 

34% 

 

 

34% 

 

Pumps 800 6700 30000 28 4% 

Motors 100 900 30000 30 11% 

 

Furthermore, in Table 3, mean surveillance 

intervals and the approximate numbers of failures 
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and components under observation are reported, 

with the corresponding failure rate,  and % 

parameters at a confidence limit of 90%. 

A few considerations can be carried out: 

 The percentage confidence interval, %, only 

depends on available fault number; 

 A reduced range of variation of % can be found 

for pressure measuring instruments in comparison 

with other transducers, due to a better global 

information. 

 For pumps and motors %  is much lower than 

for sensors, therefore allowing more reliable 

calculation in fault tree analysis. 

A preliminary data analysis shows, also, that if 

the number of faults, n, is more than 300, the 

corresponding percentage confidence interval,%, 

is  less than 20%; if n is in the order of 50, %  is 

increased up to 50% and more.  

It is to be noticed that this computation has been 

carried out for the data collected corresponding to 

the whole categories of components of transducers, 

pumps and motors, without any distinction, due to 

the specific working principles.  

Further problems arise if only data referring to 

specified sensor failure typologies are selected or 

particular environmental conditions, by using more 

selective filtering procedure, due to the reduced 

number of detected faults. 

Filtering with different selection criteria 

strongly influences the numerousness of data to be 

considered for examination; therefore, the effect of 

filtering procedure on reliability of computations in 

risk analysis should be taken into account.  

In fact, setting a more selective filtering mask, 

modifies the inventory characteristics (typology, 

environmental conditions, operating situation, 

etc..), which are considered. 

It should be taken into account which amount 

this increased number of requested characteristics 

influences failure rate of components under 

consideration and its accuracy. 

 

3.1. A practical example 

Some aspects related to reliability data accuracy 

of measuring apparatuses will be discussed with 

reference to a practical situation, concerning a 

chemical process plant. 

In particular, a stage of a distillation column is 

considered, whose temperature should be carefully 

controlled, in order to avoid unwanted temperature 

increase and a consequent column explosion, which 

is the “top event”, whose occurrence frequency has 

to be evaluated. 

The fault tree that describes the accident 

dynamics is depicted in Fig. 1. 

The basic events of fault tree that lead to 

temperature increase and to column explosion, are 

all control systems failures, in particular TIC 

(Temperature Indicator and Control) and LIC 

(Level Indicator and Control), that prevents level 

decrease in the column and concentration increase 

of the organic impurities. 

The causes that trigger accident chain are: 

1. (Abnormal Functioning) of LIC1, that closes 

control valve anomalously.  

2. (Abnormal Functioning) of TIC1, that closes 

control valve wrongly.  

3. (Abnormal Functioning) of TIC2, that opens 

control valve improperly. 

A further temperature control, TIC3, is placed as 

protection for the failures of the other temperature 

controls; therefore, we are interested to know his 

unavailability, which is the probability that a 

Missed Functioning (M.F.) occurs. 

According to literature indication [5] and 

common professional practice, failure rates of 

control loops are evaluated, by simply adding fault 

rates, which refer to all component of control loop, 

transducer, control and monitoring block, actuator, 

valve. 

Using, in particular, data from OREDA, 

regarding a globe valve for the process control with 

a pneumatic actuator, we obtain: 

                                                                               

                                                                             (6) 

 

To calculate TIC3 unavailability, according to 

previous considerations, we will use the Markov 

method.  

If, as in this case, only one component is 

considered, system states are depicted from 

diagram of Fig. 2, where λ and μ represent the 

failure and maintenance rates respectively. 
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Fig. 1. Fault tree of a distillation column. 

 

Markov equations that describe the system 

behavior are: 

 

        (7) 
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Fig. 2. Markov diagram for the single state. 

 

Assuming Pa(0) = 1 e Pb(0) = 0, the solutions of 

differential equations Eq. (7-8) are: 

 

        (9) 

 

 

                  (10) 

 

where Pb(t) represents the system unavailability 

Q(t):  

 

      (11) 

 

which is a function of time. 

Usually the steady-state unavailability Q(∞) is of 

interest, being in most cases λ<<μ and becoming 

the transitory term of Q(t) negligible very quickly 

in comparison with the Mean Time Between 

Failures (MTBF). 

In this situation Q(∞) is evaluated according to Eq. 

(12):  

          

      (12) 

 

A functioning time equal to 8400 h/year and a 

repair time of TIC3 equal to 8 h are assumed. Faults 

leading to both incorrect opening and closing of 

control valve have to be also considered. 

In order to evaluate the effect of reliability data 

accuracy, computation will be carried on with 

reference to temperature and level sensor 

contribution. 

For temperature measuring instrument, in 

particular a resistance transducer, the occurrence 

frequency of top event is evaluated using the 

reference failure rate value λT = 1.7 · 10-6 h-1  and 

then extreme values of the 90% confidence interval 

(λminT = 0 ; λmaxT = 3.9 · 10-6 h-1 ) .  

For level control system, the occurrence 

frequency of top event is evaluated using as a first 

case the reference value λL = 8.5 · 10-5 h-1 and then 

extreme values of 90% confidence interval (λminL = 

23 · 10-6;  λmaxL = 220 · 10-6 h-1). 

The most relevant results of computation are 

summarized in Table 4.  

Table 4. Effect of uncertainty of failure rates of 

TIC and LIC 

Failure rates of 

TIC 

Failure rates of 

LIC 

Top Event 

frequency  

[years-1] 

λminT λL 5.7 · 10-1 

λT λL 5.8 · 10-1 

λmaxT λL 5.9 · 10-1 

λT λminL 3.2 · 10-1 

λT λL 5.8 · 10-1 

λT λmaxL 1.2 

 

The obtained results suggest some interesting 

consideration: 

 There are branches of fault tree, which influence 

the top event occurrence frequency much more 

than other, depending on the process and control 

configurations. 

 In the studied case, level control is very 

delicate, due also to the failure rate of LIC. In 

particular, its failure rate is nearly one order of 

magnitude larger than failure rate of 

temperature sensor. 

 The uncertainty of failure rate of level 

transmitter is much higher than temperature one 

and strongly affects uncertainty of occurrence 

frequencies of top event; neglecting these 

analysis results could compromise the risk 

evaluation; 

 In most cases the uncertainty of prediction of 

occurrence rates is due to the sensors. 

 

4.   CONCLUSIONS 

 

In this paper some aspects have been analysed, 

which are important in industrial applications for 

the accuracy evaluation of risk quantitative 

computations.  

Different steps of the procedure have been 

studied, with reference to the evaluation method, to 

the uncertainty of data of interest, referring to both 

literature information and high level databases for 

maintenance and risk analysis. 

Different computation approaches, which are 

diffusely used in practical applications, were 

analysed. 

A model for the evaluation of confidence 

interval for failure rate of components to be 

analysed for risk evaluation has been set and it has 

been used for a practical application. 

In this paper significant differences of results 

arise between measuring instruments and other 

components like pumps, actuators, motors and so 

on, being uncertainty in failure rate evaluation of 

transducers much higher. 

In particular, the uncertainty about reliability of 

transducers is particularly important with respect to 

the uncertainty of top event occurrence frequency. 

Therefore, special care in the literature and 

databases data selection, in the evaluation of 

process architecture, in the analysis of 

environmental conditions effect, in the setting of 
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the most suitable theoretical approach and 

modelling should be taken in mind and carefully 

considered. 

These considerations seem to be interesting 

from a practical point of view, based on different 

aspects: the number of sensors in process control is 

more and more increasing and the widespread use 

of new technologies of transducers and transmitters, 

asking for detailed and reliable information about 

failure rates of new sensors themselves. 
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