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Abstract  

In this paper, the ability to detect broken rotor bar (BRB) defects in a small renewable energy system 

(based on a squirrel cage induction generator (SCIG)) by the digital signal processing of captured phase 

currents, is presented. The new approach proposed in this study is a combination of two techniques. The first 

technique is a discrete wavelet transform (DWT) by the decomposition of the phase current signal in 

multilevel frequency bands. This is performed with the analysis of some selected approximations and/or 

details, which contain both the lower and upper sideband components presenting the characteristic frequency 

of the BRB fault. The second technique is power spectral density (PSD) analysis. This approach provides the 

ability to optimize the diagnosis of rotor defects in electrical generators. The results obtained by the proposed 

DWT–PSD approach are proved and improved by comparing them with the results of the PSD analysis, 

obtained from the original phase current signal delivered by the 5.7-kW squirrel cage induction generator, 

based on a small wind energy conversion system. 
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1. INTRODUCTION 

 

Digital signal processing (DSP) techniques 

applied in the field of fault diagnosis have exhibited 

tremendous progress over the past few decades [1, 

2]. The gradual implementation of approved and 

improved DSP techniques has been extremely 

useful for the diagnosis of electrical machines, 

mainly aimed at evolving modern techniques to 

diagnose possible faults. Provided these faults are 

in the first stages, large and expensive damage can 

be avoided. This permits industrial users to take 

appropriate maintenance actions early, to reduce the 

potential costs caused by unexpected stops. The use 

of DSP techniques allows maximum reliability and 

precision for making necessary decisions related to 

a device state; therefore, it is possible to reach 

additional facts once these techniques are 

implemented. 

Phase current analysis has attracted notable 

attention, because phase current signals can be 

captured easily, and it is commonly used in tools 

for sensing and analysis [3]. In addition, phase 

currents or other signatures (fluxes, vibrations [4, 

5], and voltages) are frequently non-stationary, 

which makes the use of traditional signal treatment 

methods complex (or even unattainable) (e.g., 

Fourier transform (FT)). For the analysis of such 

signals, and for obtaining maximum information, 

modern DSP methods, which are convenient for 

analyzing unsteady signatures, should be employed. 

Therefore, among the advanced wavelet 

transform (WT) methods, an empirical WT (EWT) 

is employed for the generator rolling bearing and 

gearbox fault diagnosis for wind turbines by using 

measured vibration signals [6–9]. The integration of 

resonance-based sparse signal decomposition 

(RSSD) and wavelet transform is used to detect 

rolling bearing faults [10]. Other advanced methods 

employed for a similar diagnosis include rational 

dilation WT (RDWT), tunable Q-factor WT 

(TQWT), and Q-factor Gabor wavelets (QGW) 

[11–13]. Indeed, each of the above methods is 

capable of following the developments of the 

several frequencies generated by the characteristic 

mechanical defects caused by the processed 

signatures (vibration or speed signals). Diagnosis of 

frequency development is a reliable indicator of the 

existence of failure, because the generation of these 

frequencies cannot be reasoned by another 

phenomenon.  

The combination of a discrete WT (DWT) and 

the power spectral density (PSD) is an important 

contribution to the broken rotor bar (BRB) fault 

diagnosis of a small wind generator by using 

measured phase current signals. Until recently, this 

was not studied. Therefore, the use of electrical 

signatures (phase current signals) of a wind 

generator requires increasing attention, particularly 

by the spectral analysis of their DWT 

approximations, or details by a PSD technique. 

This paper is organized as follows. In Part 2, the 

mathematical theory of a WT is explained and 

distinguished for both continuous and discrete 

versions. In Part 3, the application results of a DWT 

are illustrated and discussed. Part 4 presents the 

conclusions. 
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2. WAVELET TRANSFORM THEORY 

 
A WT has been provided as a solution to 

eliminate the restrictions in the time–frequency 

representation existing in other techniques [14]. 

Essentially, a wavelet is a limited periodical 

function beginning and ending with the value, zero. 

Specifically, its function integrates at zero. A WT is 

simply an expanded FT accompanied by alterable 

windows. WT applications include compressing of 

data and images and attenuation of noises. 

The mother wavelet, W(t), as suggested by 

Morlet is expressed as 


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Where a and b are the dilation and translation 

parameters that have the role of measuring the scale 

degree and determining the wavelet time location, 

respectively. These two parameters assist the 

process of manipulating the shape of the mother 

wavelet by scaling and shifting over the signal that 

is analyzed. The robustness of the wavelets is the 

capability to adjust simultaneously the resolutions 

of both the time and frequency [14]. The case 

where the absolute value of the parameter a is less 

than 1 corresponds to high frequencies and narrow 

time widths; otherwise, it is the opposite. This 

adjustment conforms to Heisenberg's uncertainty 

principle, which is another time–frequency method. 

 

2.1. Discrete Wavelet Transform 

Because a continuous WT is considered as a 

redundant tool in DSP for promoting practical 

computational applications, it is converted into a 

numeric form by discretizing the dilation and 

translation parameters. By analyzing the original 

signal of 2N length in various frequency ranges by 

using a DWT, each range is related to a specific 

frequency resolution. By applying low-pass and 

high-pass filters, the original signal is analyzed to 

yield approximation and detail coefficients, and the 

frequency band is halved during each pass. The 

coefficients of approximation are the values 

obtained by the low-pass filter, whereas the 

coefficients of detail are those yielded by the high-

pass filter. The DWT is obtained by discretizing 𝑎 

and 𝑏. The important step is the operation of 

sampling the parameters, 𝑎 and 𝑏, to ensure 

accurate reconstitution of the i(t) resulting from the 

WT. Depending on the various levels of the 

discretization process, the WT exists in numerous 

forms. Assuming that 𝑎=𝑎0
j and b=k𝑎0

jb0, where 𝑎0 

> 0, 𝑎 and b can be discretized. Generally, 𝑎0=2 and 

b0=1; thus, the scale is sampled along a dyadic 

sequence. By specifically selecting W(t) ∈ L2 (ℜ), 

the following orthogonal wavelet is built by a 

dyadic discretization: 

W𝑗,𝑘(𝑡) = 2−𝑗/2W(2−j(𝑡 – 2j𝑘))  (2) 

Because all the function components are 

orthogonal, this function is also orthogonal, and in 

this case, the product of all the basic functions 

yields zero. By the discretization process in 

equation (2), the reverse DWT of i(t) can be 

obtained as 

  










j k

kj tWCti )()( ,
  (3) 

Where Cj,k is defined as the coefficient of the 

wavelet derived from the original signal, i(t), and 

dual function, )(tW , of W(t) as 


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From the specific approximations and details 

obtained from the original signal, significant 

amount of information can be extracted from the 

DWT. Equation (5) formulates the signal details at 

each level j, whereas equation (6) expresses the 

signal approximations at level J by collecting all the 

corresponding details [15–21]. 
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There is no redundancy because the wavelet that 

forms the details and approximations through the 

DWT is lower than the original signal. This 

remarkable feature is what reduces the 

computational cost of a DWT compared to that 

required with a CWT. Thus, equation (7) provides 

the bilateral composition of the original signal, and 

equation (8) expresses the reconstructed signal. 

JJJ DAA 1   (7) 


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Above, i(𝑡) is the real signal, j is the level of 

decomposition (j=1, 2, …, J), and Aj denotes the 

low-frequency coefficients (approximations) and Dj 

denotes the high-frequency coefficients (details) of 

y(𝑡) at the jth decomposition level. The 

decomposition architecture of a J-level is illustrated 

in Figure 1. It is clear that Dj and Aj are extracted 

from the high-pass and low-pass filtering at each 

level with down sampling. Following the 

decomposition of y(𝑡) by the J-level, the filtering 

process can present the DWT based on the 

algorithm of Mallat, where the real signal is 

decomposed into independent frequency bands.  

 

 
 Fig. 1. Example of the decomposition scheme  

with three levels 

 

Numerous wavelet families, which can be 

particularly helpful in this study, have been 
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included. The following is a list of some basic 

families: Daubechies, Haar, coiflets, biorthogonal, 

Morlet, symlets, Meyer, and Mexican hat. In 

addition, examples of other actual wavelets are the 

reverse biorthogonal, Gaussian derivatives family, 

and FIR-based approximation of the Meyer 

wavelet. The complex wavelet families are the third 

category including Morlet, Gaussian derivatives, 

Shannon, and frequency B-spline. All of these 

wavelets can be used to detect BRB defects. In fact, 

it is recommended to use a high mother wavelet 

order to minimize the overlap impact at the cost of 

a long computation time. However, because of the 

strength of this applied technique, a low mother 

wavelet order is also capable of providing 

reasonable outcomes. 

 

3. RESULTS OF DWT–PSD APPROACH 

 

The studied technique is experimentally proved 

in a PC-based diagnostic system with sampling 

frequency f=10 kHz on three squirrel cage 

induction generators with identical properties and a 

shaft speed of more than 1500 rpm [22]. The test is 

conducted for the data obtained from the mentioned 

three 5.7-kW generators; one with a good health 

rotor, the second with one BRB, and the third with 

two BRBs. For each test, the generator is connected 

to a wind turbine, which acts as a source of 

mechanical power, and also to an appropriate 

electric load, as shown in Figure 2. 

The objective is to use the power signal density 

of the phase current generator envelope analyzed by 

the DWT for the two generators with BRBs 

(defective) and compared with the first generator 

(healthy). 

 
Fig. 2. Renewable Energy System Model 

 

3.1. Regular PSD results 

When first the sampling stage of the phase 

current is formed and then analyzed by using a 

classical method MCSA, such as a PSD technique 

(precisely, the MUSIC technique), three types of 

spectra are provided to compare with the PSDs 

obtained from stator currents IPhase (traditional 

technique). 

Figure 3 shows the spectra of the stator current 

in the proximity of the fundamental frequency. 

When the number of BRBs becomes large, the 

magnitudes of both the lower and upper 

components related to the fault are identical. This is 

also the case for the space between the sideband 

components and main component. The frequencies 

related to the states of the BRBs are detectable in 

the experiments implemented at the load state. For 

the case of one BRB, the slip is (s = 2.5%), and for 

the case of two BRBs (s = 2.6%). For healthy case 

(s = 2.2%), the leakage of the spectral density 

resulting from the main frequency completely 

eliminates the sideband components. 

 
a/ 

 
b/ 

 
c/ 

Fig. 3. Regular PSD results, (a) healthy rotor, (b) 

defective rotor (1 BRB), (c) defective rotor (2 BRBs) 

 

Figure 3 (b) and (c) provide the phase current 

spectra obtained with one and two BRBs 

respectively. The lower and upper components 

associated with the fault, (1±2ks)fs, are presented 

clearly along the spectral density axis. 

https://www.mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html#f3-996829
https://www.mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html#f3-1012610
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To confirm that the harmonics, (1±2ks)fs, shown 

in the above spectra are induced by the possible 

existence of BRB faults, the spectrum of the phase 

current when the squirrel cage induction generator 

runs with a healthy rotor (figure 3 (a)) is provided 

and compared with those of the defective rotors. 

This signal processing contributes to supporting the 

fact that the presence of a BRB in a generator can 

create peaks in the spectra at the harmonics, 

(1±2ks)fs. 

Note that the spectra peaks illustrated at the 

harmonics, (1±2ks)fs, are certainly produced from 

the existence of few or numerous broken bars. 

Therefore, based on this information, it is 

acceptable to perform the fault diagnosis of rotors 

by processing the target peaks of the spectra. 

For performing fault detection of squirrel cage 

rotors without having to compare with any 

reference (reference generated from a healthy 

generator), the definitive resolution is closely 

related to the question, “Is the studied rotor 

defective or not?”. This can be done only using a 

signal that has been analyzed. It is known that all 

squirrel cage generators have a slight asymmetry 

due to the construction stage that occurs in the 

phase current spectra at a low component, (1-2ks)fs. 

Simultaneously, the speed fluctuation generates an 

extra component of high frequency (1+2ks)fs in the 

phase current spectra, as clearly shown in Figure 3. 

However, squirrel cage generator manufacturers 

ensure that the generators offer a slight asymmetry, 

which can be the major reason of the defects. 

Therefore, this will be developed in the diagnostic 

methods. The phase current spectra and particularly 

the frequency peak at (1+2ks)fs are discussed. 

Typically, this peak is extremely weak or equal to 

zero for a normal generator. 

 

3.2. DWT–PSD results 

For the PSD estimation of the signal envelope 

of some DWT approximations and details, the 

number levels of the DWT approximations and 

details can be selected. The appropriate number of 

the decomposition levels (n) relies on the sampling 

frequency, f = 10 kHz, of the generator phase 

current. A choice must be made for the high-level 

signals (approximations Aj and details Dj) to reach 

the entire frequency range in which the sideband is 

located. The level number of the DWT 

decomposition for obtaining approximation signals 

(Aj) should be such that the maximum limit of its 

related frequency band is below the main frequency 

[23] under the condition: 

2 −(n +1) f <fs    (9) 

According to the above-mentioned condition, 

the level number of the decomposition concerning 

with the approximation signals, which contain the 

left and right sideband harmonics, is the integer 

value, n, obtained by the expression 

 
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2log
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int sff
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This phase current signal should be further 

decomposed by decomposing the frequency range, 

[0–f] into more ranges. Typically, it is 

recommended to add two more levels of 

decomposition, (n + 2), which are suitable for its 

DWT analysis [23], as 

 
 

92)64.7int(2
2log

50/10000log
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Where: int is an integer number 

Table 1. Multilevel Decomposition with the 
Corresponding Frequency Bands 

Levels Approximations Details 

Aj Frequency band 
(Hz) 

Dj Frequency band 
(Hz) 

j=1 

j=2 

j=3 

j=4 

j=5 

j=6 

j=7 

j=8 
J=9 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 
A9 

0–5000 

0–2500 

0–1250 

0–625 

0–312.5 

0–156.25 

0–78.12 

0–39.06 
0–19.53 

D1 

D2 

D3 

D4 

D5 

D6 
D7 
D8 
D9 

5000–10000 

2500–5000 

1250–2500 

625–1250 

312.5–625 

156.25–312.5 

78.12–156.25 

39.06–78.12 
19.53–39.06 

 
The DWT decomposition tree is given in Table 

1. The frequency ranges associated with the broken 

BRB defects for each level are clearly provided in 

this table. Therefore, the decomposition levels that 

are extremely important for our study are from A1 

until A7 concerning the approximations and D8 for 

the details. From these approximations and the 

single detail, we selected two approximations at 

level 6 with a frequency range of [0–156.25] and at 

level 7 with a frequency range of [0–78.12]. 

Moreover, the selected single detail at level 8 with a 

frequency range of [39.06–78.12], as clearly 

presented in Figure 4, is ensured continuously for 

the three cases of the studied generators. This 

selection was made to avoid the high-frequency 

components that exist in other approximation 

frequency ranges and are not necessary for BRB-

related faults. Following the PSD estimation 

analysis step of approximations A6 and A7 and detail 

D8, it became clear that this analysis of cannot 

provide good and encouraging results to compare 

them with those derived from a regular signal for 

the BRB characteristic defects, fs±2sfs. This is 

despite there being numerous data samples from 

both the vectors being processed. Therefore, it is 

logical to use the only and remaining 

approximation at level 6, which provides the best 

results, for comparison with the results obtained 

from the original phase current signal.  
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a/ 

 
b/ 

 

To validate the proposed method, Table 2 lists 

the generator conditions, measured speeds, slip 

percentages, and frequencies of the theoretical 

sideband components related to the studied fault for 

the regular and transformed signals. 

The above-mentioned current data were 

transformed with the Daubechies-44 mother 

wavelet using the wavelet toolbox of MATLAB 

software, and the PSD (exactly the MUSIC method) 

was used to analyze them. Their spectra in the three 

cases are presented in Table 2 and shown again in 

Figure 5 based on the DWT method with the 

approximation at level 6. We select this from all the 

approximations and details because its best 

frequency band between 0.0 and 156.25 Hz 

contains only the fundamental frequency, fs, and its 

sideband frequencies, fs±2sfs. 

 
c/ 

Fig. 4. Selected approximations and detail for (a) healthy 

rotor, (b) defective rotor (1 BRB), (c) defective rotor (2 

BRBs) 

 
Table 2. Generators Conditions with Sideband 

Components from the Regular and DWT Signals 
Generator 
condition 

Speed 
(rpm) 

Slip 
(%) 

Regular signal 
fs±2sfs (Hz) 

DWT (A6) 
fs±2sfs (Hz) 

Healthy 

(1 BRB) 
(2 BRB) 

1533 

1538 
1539 

2.2 

2.5 
2.6 

-73.86  -75.24 

-66.84  -57.57 
-54.14  -51.25 

-57.62  -55.49 

-46.64  -50.00 
-39.60  -40.17 

 
The PSD estimation results of the 

approximation at level 6 for the three cases of 

generators: healthy rotor, rotor with one BRB, and 

rotor with two BRBs, are presented clearly in 

Figure 5 (a), (b), and (c) consecutively. 

The outcomes derived from the regular signal, 

as shown in Figure 3, and those obtained from the 

approximation at level 6, as shown in Figure 5, can 

be compared. Next, by using the peak values of the 

sideband components for the two cases provided in 

Table 2, the following points of interest may be 

drawn: 

 From the graphs of both the methods, it is 

noticed that the frequencies associated with the 

BRBs are the same as those for the regular 

phase current signal and DWT approximation at 

level 6 in each studied case of the three 

generators. 

 Based on both the graphs and Table 2, the peaks 

of the sideband components, fs±2sfs, 

significantly increase. For example, the 

defective generator with 2 BRBs has peaks of [-

54.14 dB -51.25 dB] for the regular signal and [-

39.60 dB -40.17 dB] for the DWT 

approximation at level 6, i.e., the differences are 

[14.54 dB 11.08 dB]. The defective generator 

with 1 BRB has peaks of [-66.84 dB -57.57 dB] 

for the regular signal and [-46.64 dB -50.00 dB] 

for the DWT approximation at level 6. 
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Therefore, the differences are [20.20 dB 7.57 

dB], which are large values in terms of the PSD. 

 
a/ 

 
b/ 

 
c/ 

Fig. 5. DWT–PSD results of the approximation at level 6 

(a) healthy rotor, (b) defective rotor (1 BRB), (c) 

defective rotor (2 BRBs) 

 

 The information provided by the DWT 

approximation at level 6 is clearly important, 

particularly in terms of the spectral density, and it 

can complement that offered by the regular phase 

current to achieve more accurate detection. This 

scenario is an example of a health policy if the 

PSD method is not sufficient to be employed. 

 

3.3. Discussions 

The number of levels required for the studied 

technique is calculated from the sampling 

frequency of the data acquisition system and 

fundamental frequency of the generator. Two 

additional levels are added for more decomposition 

of the approximations and details necessary for the 

DWT analysis. 

The frequency bands of both the approximations 

and details for each of the nine levels are identified. 

Subsequently, they are neutralized to exclude the 

characteristic BRB frequencies, which remain in 

the required frequency bands. 

Among the selected frequency bands, those with 

high frequencies are abandoned to avoid spectral 

interference. Therefore, for the study and analysis, 

there are only three frequency bands, and they are 

related to A6, A7, and D8. Following the digital 

processing phase, it is found that only the A6 

frequency band is capable of delivering excellent 

results. 

The PSD is applied to transform the stator 

current vector into a representation in the frequency 

domain. It may be the most robust estimation and 

one of the main tools utilized in DSP. 

A DWT is applied to set the stator current 

signature for generating increasing information by 

producing an approximation and detail 

decomposition of that signature. The DSP utilized 

for the fault diagnosis is established based on the 

analysis of the regular phase current signal and its 

approximation at level 6 to determine their 

difference. This is done because this difference is 

extremely important in cases of low slips and 

certain to occur in cases of low loads. The DWT 

serves like a brave knight on the chess board of 

DSP, provided our generosity is immense. 

The DWT studied above is extremely nonlocal, 

and complete samples of the phase current are 

necessary to generate the approximations and 

details decomposition at each sampling point. 

Producing the approximations and details 

decomposition of a sampled phase current requires 

low-pass and high-pass filters. The results obtained 

from this method, particularly the peaks associated 

with the sideband components, motivates its 

combination with some artificial intelligence 

methods, such as a fuzzy logic system, to identify 

the type as well as to count the BRB defects, while 

being suitable for online implementations. 

 

4. CONCLUSION 

 

In this work, a DWT based on the PSD is 

offered for diagnosing the presence of BRB defects 

in a squirrel cage induction generator by using the 

stator current. Therefore, a comparison study of two 

methods for BRB fault detection is performed, 

proved, and improved. First, a method uses the 

estimated PSD and allows traditional detection of 

BRBs by applying the power spectrum analysis to 

the phase current of the squirrel cage induction 

generator operating under the stationary condition. 

The fault detection is accomplished by analyzing 

both the sideband components (lower and upper) on 

both the sides of the main frequency component. 
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This traditional method has important features such 

as simplicity of the DAQ systems and needed 

software, robustness, and excellent outcomes, at 

least until now. However, under several conditions, 

such as insufficiently non-loaded generators where 

the slip (s) is extremely small and both the sideband 

components nearly overlap with the main 

frequency, they are difficult to observe and 

therefore difficult to use for diagnosis. The second 

method uses a DWT. Therefore, this allows the 

decomposition of the phase current into numerous 

levels of frequency bands, which provides us the 

opportunity to study any approximation or detail 

individually in its frequency band. The benefit of a 

DWT over a decomposition step is the analysis of 

the information included in an unsteady signal at 

various time–frequency representations. The DWT–

PSD approach may be considered as an extension 

of the PSD obtained from the original signal under 

unsteady conditions. Finally, this type of technique 

can represent a new trend to achieve fault diagnosis 

under several conditions where the PSD obtained 

from the original signal is not efficient.  
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