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Abstract  

The imperative of quality and productivity has increased the complexity of technological processes, 

posing the problem of reliability. Today, fault diagnosis remains a very important task because of its essential 

role in improving reliability, but also in minimizing the harmful consequences that can be catastrophic for the 

safety of equipment and people. Indeed, an effective diagnosis not only improves reliability, but also reduces 

maintenance costs. Systems in which dynamic behaviour evolves as a function of the interaction between 

continuous dynamics and discrete dynamics, present in the system, are called hybrid systems. The goal is to 

develop monitoring and diagnostic procedures to the highest level of control to ensure safety, reliability and 

availability objectives. This article presents an approach to the diagnosis of hybrid systems using hybrid 

automata and neural-fuzzy system. The use of the neural-fuzzy system allows modeling the continuous 

behaviour of the system. On the other hand, the hybrid automata gives a perfect estimate of the discrete 

events and make it possible to execute a fault detection algorithm mainly consists of classifying the appeared 

defects. On the implementation plan, the results were applied in a water desalination plant. 
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1. INTRODUCTION 

 

The complexity of modern systems causes an 

interaction between the continuous and discrete 

behaviour of systems. This is the case for several 

manufacturing plants, robotics, agents systems, and 

physical plants. This kind of complex systems, 

called hybrid dynamic system (HDS), requires a 

specific formalism to be analysed and modelled. In 

the literature, a number of modeling formalism of 

HDS has been proposed. It can be classified into 

three main categories: continuous approach, event-

based approach, and mixed approach. Continuous 

approaches ignore the discrete mode changes of this 

system whereas discrete approaches disregard the 

continuous dynamics of the system. In mixed 

approaches, continuous and discrete components 

are represented rigorously and explicitly and the 

collaboration is reflected in the interface they 

connect.  

HDS fault diagnosis requires the 

implementation of a monitoring system capable, at 

any time, of managing a failure affecting the 

system. That's why, the choice of modeling 

approach is very important to ensure system 

reliability and security. Recently, different 

techniques have been applied. In this paper, we 

focus our attention on the problem of FDI (Fault 

Detection and Isolation) for hybrid system. We 

have proposed a diagnoser based on the use of 

neural/fuzzy system well known in continuous 

field, coupled with hybrid automata used in the 

field of discrete event systems. A hybrid automaton 

is used also as well for the detection and location of 

faults. Indeed, if the diagnosis is fast and the faulty 

component is identified, the maintenance operations 

can be performed more quickly.  

In order to present our methodology, this paper 

is organized as follows: After an introduction on the 

context of this work, the section 2 describes the 

different steps of the proposed fault diagnosis 

approach, also the modeling and fault detection 

technique used. Section 3 is dedicated to the 

description of Reverse Osmosis Desalination 

system. This system is considered to show the 

effectiveness of our diagnosis approach. At the end, 

a conclusion is presented with some perspectives. 

 

2. FAULT DIAGNOSIS APPROACH BASED 

ON HYBRID MODEL 

 

First, Fault diagnosis is very important because 

it can provide accurate fault information and 

defined the diagnosability of the system .The 

diagnosability consists in determining if the system 

model is rich enough in information in order to 

allow the diagnose to infer the occurrence of 

predefined faults within a finite observable events 

after their occurrence. In this paper focus on hybrid 

models and propose the generation of a diagnoser 
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from a Neuro-fuzzy model and hybrid automata 

model of the system. 

The mixed approach, proposed in this paper, is 

based on a combination of two parts: continuous 

model and discrete model. A group of ANFIS 

models describe the continuous part and the 

discrete component is described by a hybrid 

automata. This approach operates by alternating 

continuous steps where the state variables and time 

operate continuously and discrete steps of a 

plurality of discrete and instantaneous transitions 

may be crossed.  

This method of diagnostic combines the 

advantages of both approaches ANFIS and hybrid 

Automata for optimal performance especially 

during the fault localization phase. Each step is 

described in a conventional form. 

 

2.1. Fault diagnosis approach 

The Neural/fuzzy modeling goal remains to 

design a model for the generation of residues. The 

general concept of residue generation also remains 

the same as for analytical models. It consists in 

comparing the outputs of the process to their 

estimates, but in this case, the estimates are 

calculated by an ANFIS model. 

The output residual of a dynamic model can be 

calculated by:  

𝑒(𝑘) = 𝑦(𝑘) − 𝑦𝑟(𝑘)             (1) 

The sum of square residual can be calculated as: 

𝐽 =
1

𝑁
∑ (𝑒(𝑘))2𝑁

𝑘=1              (2)  

Where, N is the length of the observation. 
Assume that the threshold value ε, then the fault can 
be determined by: 

{
𝐽 ≤ 𝜀, 𝑁𝑜𝑟𝑚𝑎𝑙

𝐽 > 𝜀, 𝐹𝑎𝑢𝑙𝑡
                                      (3) 

And ε=2J0, where J0 is the sum of square 
residual under normal condition.  

 

2.2. Modeling of the continuous part based on 

ANFIS 
Real systems are complex and generally non 

stationary behavior and nonlinear making a 
modeling step more difficult. Yet implementing a 
predictive tool must accommodate this. Also divers 
artificial intelligence techniques were tested on 
prediction problems and have shown better 
performance than those of "conventional" methods 
It is clear from this work that the neuro fuzzy 
networks are particularly suitable In this set our 
work deals more specifically with the ANFIS 
(Adaptive Neuro Fuzzy Inference System) proposed 
by Jang [2]. 
 
2.2.1 Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 
We present in this section the basics of the 

ANFIS network architecture and its hybrid learning 
rule. The joint use of neural and fuzzy methods in 
hybrid models provides benefits, mainly, learning 

capabilities of neural networks, and the readability 
and flexibility of fuzzy logic. 

The main type of association between neural 
networks and fuzzy systems is the case where a 
fuzzy inference system is put in the form of a 
multilayer network, wherein the weights correspond 
to the parameters of the system, the network 
architecture depending on the type of rules and the 
methods of inference, aggregation and 
defuzzification chosen. The most used in this field is 
the ANFIS model.  

 

  

 

 

 

 

 

 
Fig. 1. ANFIS structure for TS system with 2 

inputs-one output. 

 

The ANFIS is an adaptive array class. It can be 

seen as a feed-forward neural network for which 

each layer is a component of a neuro-fuzzy system 

and, as such, it is an "approximator" universal. It is 

thus used in various applications of predictions. 

ANFIS system performs a linear approximation of 

the output variable by decomposing the input space 

into different fuzzy spaces.  

Consider Figure 1 to describe the architecture of 

a system ANFIS and briefly explain the inference 

mechanism of such a system. Adaptive neuro-fuzzy 

inference system is a type of hybrid system that 

combines the evident knowledge of Takagi–Sugeno 

(TS) fuzzy inference system and the supervised 

learning potential of the multilayer feedforward 

neural network in one approach called ANFIS. It is 

a very robust technique that aims to achieve the 

nonlinear and complex relationship between input 

and output data, it is much simpler, suppose that we 

have two inputs x and y, and one output f. for “If-

Then” of Takagi–Sugeno (TS) model, two rules are 

used as follows (4) and (5): 

𝑅1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1 

𝑇ℎ𝑒𝑛 𝑦1 = 𝑓1 (𝑥, 𝑦) = 𝑝1 𝑥 + 𝑞1 𝑦 + 𝑟1          (4) 

𝑅2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 

𝑇ℎ𝑒𝑛 𝑦1 = 𝑓2 (𝑥, 𝑦) = 𝑝2 𝑥 + 𝑞2 𝑦 + 𝑟2          (5) 

Where A1, A2, and B1, B2 are the membership 

functions of the two input x and y respectively and 

the p1, q1, r1 and p2, q2, r2 are linear parameters of 

the output of Takagi–Sugeno fuzzy inference 

model. 

As standard, ANFIS architecture has five layers. 

Where the first and fourth layers (square nodes) 

formed from an adaptive node, and fixed nodes 

(circle nodes) constitute the essential ingredient of 
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the other layers. Explanation of each layer is 

described in the following paragraphs:  

The output of the nodes in Layer 1 is the 

membership values of the premise part: 

𝑂𝑖
1 = µ𝐴𝑖

(𝑥),   𝑖 =  1,2                          (6)            

Every node in Layer 2 is a fixed node labeled M, 

which multiplies the incoming signals: 

𝑂𝑖
2 =𝑤𝑖= µ𝐴𝑖

(𝑥)  × µ𝐵𝑖
(𝑥),    𝑖 =  1,2              (7)  

Every node in Layer 3 is fixed node labeled N for 

normalization. It calculates the ration of the i-th 

rules firing strength to the sum of all rules firing 

strengths:  

𝑂𝑖
3 = 𝑤̅𝑖 =

𝑤𝑖

𝑤1+𝑤2
, 𝑖 =  1,2                        (8)           

In Layer 4, every node is an adaptive node while 

the node function is: 

𝑂𝑖
4 = 𝑤̅𝑖 × 𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1,2    (9)               

Where wi  is the output of layer 3 and pi, qi, ri are 

the parameters for the first order Sugeno rule. The 

overall output of the network can be defined as: 

𝑂𝑖
5 = 𝑓 = ∑ 𝑤̅𝑖 × 𝑓𝑖𝑖                                        (10) 

The gradient descent algorithm combined with 

the least squares method to from hybrid learning 

algorithm proposed by Jang [2], used to learn the 

ANFIS algorithm or to update the nonlinear 

premises parameters in layer 1 and the linear 

consequent parameters in layer 4. Forward path and 

backward path are the two ways of the hybrid 

learning algorithm. Firstly, on the forward path, the 

premises parameters in layer 1 are fixed and a 

recursive least square estimator (RLSE) method was 

applied to update the consequent parameters in the 

layer 4. The linearity of the consequent parameters 

is the reason to use the RSLE method which aims to 

accelerate the convergence rate in hybrid learning 

process. While the algorithm is in the backward way 

the consequent parameters are fixed and the 

gradient descent algorithm runs to update the 

premises parameter in the layer 1, and an error 

generated that represents the difference between the 

desired output and the actual output, is propagated 

back to the first layer. 

 

2.3. Modeling of the discrete event by hybrid 

automata 

Systems where discrete and continuous dynamic 

interact and where their interaction determines the 

qualitative and quantitative behavior of these 

systems are known as hybrid dynamic systems 

(HDS). These systems can be of very diverse 

natures. We can meet continuous systems which are 

associated discrete commutations or discrete event 

systems which are associated certain continuous 

evolutions. An overview of the main approaches 

proposed in the literature relating to the modeling of 

hybrid systems, can be found in [4]. 

A hybrid automaton is a mathematical model for 

HDS, which combines, in the same formalism, 

transitions allowing to capture a discrete change 

with differential equations allowing to capture a 

continuous change. 

 

2.3.1. Hybrid automata 

From an informal point of view, a hybrid 

automaton appears as a finite state automaton 

driving a set of continuous dynamic equations. The 

equations, modeling the continuous behavior at a 

given moment, depend on the state of the automaton 

but this one evolves according to the value of the 

continuous quantities. A hybrid automaton is 

defined by the tuple: 

𝐺 = (𝑄, 𝛴, 𝑋, 𝑓𝑙𝑢𝑥, 𝐼𝑛𝑖𝑡, 𝛿)                            (11) 

where, Q: is the set of hybrid model states of the 

system; Σ: is the set of system events; X: is a finite 

set of continuous variables describing the continuous 

dynamics of the system; flux: Q × X → <n: is a 

function characterizing the continuous dynamic 

evolution of X in each state q; δ: Q × Σ → Q: is the 

state transition function of the system. A transition 

δ(q, e) = q+ corresponds to a change from state q to 

state q+ after the occurrence of discrete event e ∈ Σ; 

Init = (q1 ∈ Q, X(q1), flux(q1)):  is the set of initial 

conditions [3]. 

Using Hybrid automata requires the creation of a 

normal operating model that represents the system 

in normal situations, that is, in the absence of any 

fault. This model is obtained from the identification 

of different possible states of the system, the 

evolution equations in each state and the conditions 

necessary for transitions from one state to another. 

In this section of paper, the hybrid automata have 

been used for modeling to estimate the current 

mode of hybrid system. 

 

2.4. Fault diagnosis through the hybrid automata 

The goal is to design a diagnoser to analyze, 

detect, and locate a fault in a system.  

 

 
Fig. 2. Diagnosis system based on the 

proposed model. 

 

The method used is based on the use of hybrid 

automata, a tool for modeling and monitoring real-
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Fig. 3. Synoptic diagram of the desalination plant. 

 

 

 

time systems. Figure 2 illustrates the overall 

diagram of the construction of the diagnoser. 

 

3. REVERSE OSMOSIS DESALINATION 

SYSTEM DESCRIPTION 

 

The treatment plant concerned by this study is 

the drinking water production station of the city of 

Touggourt in southeast Algeria. It supplies water to 

over 200,000 inhabitants and has a nominal 

treatment capacity of 400 l/s. The plant operates 

continuously (24 hours a day) and includes three 

reverse osmosis streams that operate independently. 

A reverse osmosis system typically consists of four 

main components: pre-treatment, high pressure 

pump, RO unit, and post-treatment. 

The city of Touggourt is at present fed with 

drinking water from four geothermal drillings of 

1700 m of depth. The daily flow of the station is 

34560 m3/day. The salinity of water equal to 2.5 g/l 

and the temperature exceeds 60°C. The desalination 

plant can treat (507 m3/h) to produce (450 m3/h) 

treated water having a salinity of less than 0.6 g/l. 

The conversion rate over than 80%. At first, it’s 

pretreated to prevent clogging membranes.  

The filtration of the suspended material is done 

through 4 cylindrical pressure sand filters working 

in parallel. Each osmosis stream has 4 cartridge 

filters. The step of the pretreatment of raw water 

before it passes through the reverse osmosis 

modules is necessary to give the raw water 

physicochemical characteristics compatible with the 

type of membrane used, and in this way prolong its 

service life. 

Due to the high pressure, osmosis water 

penetrates through the membranes and the salt water 

becomes highly concentrated (brine). The product 

of the water flows directly from the permeators into 

a storage tank, where blinding water and chemicals 

are added to the mineralized water to adjust pH and 

conductivity. Brine (at high pressure) is removed 

(Fig. 3).  

 

 

 

4. APPLICATION 

 

4.1. Simplified modeling 

This section describes a simplified model of the 

desalination plant, which is used for modeling and 

fault diagnosis procedure.  
Fig. 4. Flow diagram of the desalination plant. 

 

Figure 4 shows the flow diagram of the 

desalination plant and the main variables of the 

system. Q1 is the raw water flow stocked in the raw 

water tank, Q2 is the feed water flow provided by 

the feed pump ‘P1’, Q3 is the permeate flow 

provided by the high pressure pump ‘P3’, Q4 is the 

reject flow, Q5  is the blending water, Q6  is the 

drain water provided by the reject pump ‘P6’ and Q7 

is the water demand provided by the treated water 

pump ‘P7’. The water level of the tanks may be 

calculated by a mass balance of the water in each 

tank, as follows: 

ℎ1̇ =
1

𝑆1
(𝑄1 − 𝐸2. 𝑄2)                       (12)            

ℎ2̇ =
1

𝑆2
(𝐸3. 𝑄3 + 𝑄5 − 𝐸7. 𝑄7)                   (13)               

ℎ3̇ =
1

𝑆3
(𝑄4 − 𝐸6. 𝑄6)                    (14)  

Where, hi is the water level of the tank i, Si is the 

cross section of each tank, Ei the pump state 

(ON=1; OFF=0).  

 

4.2. Functioning mode of the system 

The desalination plant functioning can be 

summarized in four modes. 

• Mode 1 (Filling): In this mode, tanks T1, T2 and 

T3 have to be filled to h1max, h2max and h3max 

respectively. 

• Mode 2 (Filling + Drain): Tanks T1 and T2 have 

to be filled to h1max, and h2max respectively and 

Tank T3 has to be emptied to h3min. 

• Mode 3 (Filling + Drain + Transferring): Tank 

T1 has to be filled to h1max, Tank T3 has to be 

emptied to h3min and Tank T2 has to be 

filled/emptied to h2max/h2min depending the 

transferred flow Q5. 
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• Mode 4 (Filling + Transferring): Tank T1 has to 

be filled to h1max and Tank T2 has to be 

filled/emptied to h2max/h2min depending to the 

transferred flow Q7. 

 

4.2.1. Continuous part modeling 

The desalination plant modeling is performed by 

choosing eight input-output variables; these models 

allow approaching the behavior of this system by a 

collection of local models. They have a very 

important representative capacity. Indeed, the 

number of necessary rules to approach a system to a 

certain degree of accuracy is generally reduced:  

ℎ̂1 = 𝐴𝑁𝐹𝐼𝑆1(𝑄1, 𝑄2, ℎ1)                  (15) 

ℎ̂2 = 𝐴𝑁𝐹𝐼𝑆2(𝑄3, 𝑄5, 𝑄7, ℎ2)               (16) 

ℎ̂3 = 𝐴𝑁𝐹𝐼𝑆3(𝑄4, 𝑄6, ℎ3)               (17) 

 For each studied desalination plant variable, a series 

of data were used for its identification obtained from 

operating measurements data of the studied plant. For 

example, for water tank T1 level flow variable, the 

network ANFIS model used is composed of three inputs 

and one output, and each input is fuzzified by three fuzzy 

sets of Gaussian type. 

Fig. 5. ANFIS model for h1. 

 

4.2.2. Discrete part modeling 

The figure 6 shows the hybrid automaton that 

represents the system under normal conditions in 

this exploitation mode is part of the complete 

automaton. 

 

Fig. 6. Hybrid automata of normal behavior modeled 

by STATEFLOW/MATLAB. 

 

4.3. Construction of the diagnoser with stateflow 

The control of the desalination plant is simulated 

with the MATLAB Stateflow and Simulink 

toolboxes. It uses a variant of the finite state 

machine. It specifically uses the formalism of 

hybrid State charts and provides a building block 

that can be included in a Simulink model. 

Moreover, it allows the representation of hierarchy, 

parallelism and history. The hierarchy allows the 

organization of complex systems by defining a 

parent / offspring object structure. 

 

4.3.1. Residuals generation 

The generation of residues consists in comparing 

the measurements resulting from the system with 

their estimates resulting from a neuro-fuzzy model. 

With this model we can generate 5 residuals: 3 

continuous residuals and 2 signature events 

residuals. 

 

4.3.1.1. Continuous residuals 

𝑟1 = ℎ1 − ℎ̂1               (18) 

𝑟2 = ℎ2 − ℎ̂2                (19) 

𝑟3 = ℎ3 − ℎ̂3                    (20) 

                
4.3.1.2. Signature events residuals 

𝑟4 = 𝐸6 − 𝐸̂6                (21) 

𝑟5 = 𝐸7 − 𝐸̂7                    (22)  

Where, 

𝐸̂𝑖 = {
1  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝 𝑠𝑜𝑢𝑙𝑑 𝑏𝑒 𝑖𝑛 𝑅𝑈𝑁 𝑆𝑡𝑎𝑡𝑒

  0  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝 𝑠𝑜𝑢𝑙𝑑 𝑏𝑒 𝑖𝑛 𝑆𝑇𝑂𝑃 𝑆𝑡𝑎𝑡𝑒
  (23) 

We injected defects in a random way. We consider 

two kinds of failure mode: 

- Continuous faults: faults that perturb the state 

equations. 

- Discrete faults: faults that perturb the transition 

between different modes. 
 

Table 1.Fault Signature 

 

 

 

 

 

 

 

 

 

Fig. 7. Diagnoser of desalination plant (Flow). 
 

r1 r2 r3 r4 r5 Fault description Fault Type 

Z Z Z Z N Pump P6: Fail To Run Discrete 

Z Z Z Z P Pump P6: Fail To Stop Discrete 

Z Z N Z Z Check valve blocking Continuous 

Z N Z Z Z Pump P3:Flow capacity Continuous 



DIAGNOSTYKA, Vol. 21, No. 1 (2020)  

Achbi M S, Kechida S.: Methodology for monitoring and diagnosing faults of HDS: a case study on … 

 

32 

4.4. Simulation results 

In order to test the effectiveness of the faults 

detection and location technique of the proposed 

diagnosis approach, we injected defects in a random 

way. At first, the system is infected with 6 faults as 

mentioned in table 1 and each fault can be either 

continuous or discrete fault.  The Figure 8 presents 

the generated residual and decision for each fault. 

 

Table 2. Faults to be detected and isolated 
Fault description Fault Type Fault Time 

Pump P6: Fail To Run Discrete [200,600]s 

Pump P6𝑃6: Fail To Stop Discrete [1000,2000]s 

Check valve blocking Continuous [3000,4000]s 

Pump P3: Flow capacity Continuous [1400,1800]s 

Valve V3: Fail To Close Discrete [2500,3500]s 

Leakage Continuous [700,1200]s 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Residuals generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Decisions. 

 

After several simulations, this diagnosis 

approach detects and locates every defect at any 

time, it is thus reliable. Also the faults are always 

detected and isolated most quickly possible. The 

results presented in this work show the effectiveness 

of the proposed diagnostic system. 

 

5. CONCLUSION 

 

In this paper, we have presented an approach to 

solving the fault detection, isolation and 

identification problem for hybrid systems. 

The proposed diagnosis system is used for 

detecting faults in desalination plant. We used these 

models for three steps ANFIS system is well suited 

for designing intelligent controllers because it is 

capable of making inference ever uncertainty with a 

learning capacity of neural networks. The 

simulation results show the efficiency of the 

proposed scheme for automatic fault diagnosis. The 

advantage of the proposed approach is the 

simplicity and the efficiency for industrial 

applications.  

Future works aims at considering the problem of 

fault tolerant control using the proposed scheme. 
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