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Abstract 

This study analyzes vibration signals related to bearing defects using a method that reconstructs an effective 

signal. This reconstruction is based on the determination of the instantaneous amplitude and phase. Then, a 

decomposition method is applied to the amplitude and phase to obtain several simple functions. Once the 

functions are obtained, an evaluation of impulsivity is performed on each function using the proposed 

parameter. This selects functions that contain fault data. The important signal is then identified and used. After 

the creation of the effective signal, filtering by a morphological operator with a structuring element is applied 

to improve the signal quality. Finally, in the spectrum of the absolute values of this signal, the defect can be 

detected from the frequency of the peaks. Signals from different databases were analyzed using the proposed 

method, illustrating the results in the form of high-amplitude peaks in the frequency of bearing component 

defects. 
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List of Symbols/Acronyms 

 
AHDE– Dilation and erosion average-hat operator; 

AHCO– Closing and opening average-hat operator; 

𝑎 – Contact angle; 

𝐴𝐼– Instantaneous amplitude; 

𝑎𝑛 – Analytic signal; 

CWRU–Case Western Reserve University; 

𝐷𝑚– Pitch diameter; 

𝑑– Ball diameter; 

EMD – Empirical Mode Decomposition; 

EFD – Empirical Fourier Decomposition; 

F – Function; 

Fr –Operating speed; 

𝐹𝑜𝑟– Fault frequency of the outer ring; 

𝐹̅(𝜔)– Fourier spectrum magnitudes; 

𝑓𝑛– Frequencies; 

𝑓𝑠– Sampling frequency; 

𝑓𝑐– Characteristic fault frequency; 

GI – Gini index; 

H – Hilbert transform; 

HI – Hoyer index; 

𝐼𝑚– Imaginary part; 

𝐾𝑢– Kurtosis; 

𝐿–Signal length; 

𝐿𝑆𝐸–Length of the structural element; 

MHPO1– Morphology hat product operation; 

MCKD– Maximum Correlated Kurtosis Deconvolution; 

NE– Negentropy; 

P– Parameter; 

𝑄𝐼– Instantaneous phase; 

𝑅– Real part; 

SVMD – Successive Variational Mode Decomposition; 
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SE– Structuring Element; 

𝑢(𝜔)– Band-pass filters; 

𝑥(𝑡)– Vibration signal; 

𝑥̅ – Mean; 
‖𝑥⃗‖1– L1 norm; 

𝑋(𝜔)– Spectrum of the signal; 

𝑧– Number of balls. 

 

1. INTRODUCTION 

 

Bearings are components consisting of an inner 

and outer ring, a cage, and a rolling element. They 

are generally used as links between shafts for 

transmitting motion and supporting loads. In the 

event of poor operating conditions, the bearings can 

fail, leading to partial or total machine failure. 

According to statistics, bearings are responsible for 

between 40% and 45% of faults in rotating machines 

[1], making them a strategic component. Several 

diagnostic and prognostic techniques are used to 

detect defects. These include acoustic analysis based 

on the analysis of acoustic emission signals [2]. 

Similarly, ultrasonic analysis enables the detection 

of defects on the basis of the transmission and 

reception of an ultrasonic wave through the material 

[2]. Moreover, vibration analysis focuses on 

monitoring abnormal vibrations produced by 

defects, whereas thermography analysis relies on 

defect detection based on variations in 

thermodynamic properties [2]. However, vibration 
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analysis is more feasible for fault monitoring and 

detection because it offers several signal processing 

methods [3]. Fault detection using vibration signal 

analysis consists of two essential steps [4]. The first 

step involves the collection of signals by a 

measurement chain comprising acceleration, speed, 

or displacement sensors [4]. The second step 

involves processing the signals using a specific 

diagnostic method [4]. Signal analysis is performed 

in three domains: the time domain, where the signal 

varies as a function of time; the frequency domain, 

which shows the variation of vibration amplitude as 

a function of frequency; and the time–frequency 

domain, which illustrates the signal as a function of 

both time and frequency [4]. 

The analysis of vibration signals in the time 

domain is performed using statistical indicators to 

assess the bearing condition, such as the statistical 

parameter known as kurtosis, created by D. Dyer et 

al. [5]. This parameter takes a value lower than three 

for a healthy bearing with a Gaussian distribution of 

vibration amplitude [5]. Many statistical indicators 

are used in the field of defect detection, such as the 

Gini index of economic origin [6]. However, it is 

applied in the processing of vibration signals to 

evaluate the pulses produced by the defect [6]. This 

index is more efficient than kurtosis [6]. In addition, 

the L2/L1 norm proposed by Jia et al. [7], the Hoyer 

index used by Zhao et al. [8], and negative entropy 

exists. Entropy, a thermodynamic concept, is used to 

identify the complexity of systems, but negative 

entropy is a parameter used in the same context as 

other parameters for assessing signal impulsivity [9]. 

In addition, the generalized logarithm penalty 

strengthens the signal pulses while reducing noise, 

demonstrating increased efficiency [10]. The 

complexity of signals offers additional insight for 

detecting faults, such as the weighted entropy index, 

which can be used to select disordered and ordered 

signals [11]. Disordered signals containing complex 

data with several pulses are not similar to sinusoidal 

signals [11]. Furthermore, comparing data from the 

bearing’s healthy state with that of its current state 

makes it easy to detect faults without locating faulty 

components in the bearing [12]. 

Frequency signal analysis is based on the 

representation of the signal’s vibration amplitude as 

a function of frequency, using transformations such 

as the Fourier transform to obtain the spectrum and 

the Hilbert transform, which are widely used for 

signal envelope analysis [13]. Time–frequency 

analysis is performed using transformations such as 

the Hilbert–Huang transform [13]. This transform is 

a combination of the Hilbert transform and the signal 

decomposition method known as empirical mode 

decomposition (EMD) [13]. Empirical mode 

decomposition is the first method of signal 

decomposition proposed by Huang et al. [14]. Over 

time, several decomposition methods have been used 

in the diagnosis of bearing defects, such as the 

SVMD method developed by Nazari et al. [15]. 

Noise, poor positioning and mounting of the sensor 

result in the measurement of a low-quality noisy 

signal [16]. To ensure noise suppression, it is 

necessary to apply certain methods such as 

morphological operators and band pass filtering 

around the resonance frequency [16]. The two pass 

frequencies of this filter are usually represented by a 

kurtogram, which represents the variation of the 

spectral kurtosis as a function of the frequency [12]. 

In addition, deconvolution methods are widely 

applied to extract the impulse portion of the signals, 

which contains defect information [16]. 

Artificial intelligence, which consists of machine 

learning and deep learning, opens a new path in the 

field of machine fault diagnosis. In general, the 

principle of diagnosis using artificial intelligence 

consists in extracting the defect characteristics from 

the signal and then introducing them into a 

classification model, such as the one proposed by 

Sun.Y et al., which involve transforming the signal 

into a symmetric image used as the input parameter 

for the convolution neural network [17]. Therefore, 

depending on the performance of the classifier, the 

efficiency of the diagnostic method can be assessed 

as being better or not. To this end, several 

performance improvement techniques have been 

developed, such as the probabilistic impulse 

response model with a multi-layer structure 

proposed by Zuo.L et al., to improve the impulse 

neural network [18]. The features used in the 

classification model, such as vector support 

machines, can be determined from the variation of 

the signal either in the time or frequency domain, and 

its characteristics include statistical parameters such 

as mean and energy [19]. 

In this paper, we present a method for detecting 

bearing defects based on vibration signal analysis. 

The rest of the article is organized as follows: section 

(2) presents the proposed method, which integrates 

several signal processing tools. Sections (3 and 4) 

illustrates the application and evaluation of the 

performance of the proposed method using signal 

processing available in databases. 

 

2. METHODS 

 

We propose a method for the analysis of bearing 

vibration signals to detect defects. The proposed 

method comprises three steps, as shown in the 

flowchart (Fig. 1). 

Step 1: Determine the instantaneous amplitude 

and phase using the analytical signal obtained from 

the Hilbert transform. The equations below express 

the amplitude and phase of the signal [20]. 

 𝐻[𝑥(𝑡)] = 𝑥(𝑡) ∗
1

𝜋𝑡
 (1) 

 𝑎𝑛(𝑡) = 𝑥(𝑡) + 𝑗𝐻[𝑥(𝑡)]  (2) 

 𝐴𝐼(𝑡) = √𝑥(𝑡)2 + 𝐻[𝑥(𝑡)]2  (3) 

 𝑄𝐼(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐻[𝑥(𝑡)]

𝑥(𝑡)
)  (4) 

 𝑎𝑛(𝑡) = 𝐴𝐼[𝑐𝑜𝑠⁡(𝑄𝐼) + 𝑗𝑠𝑖𝑛(𝑄𝐼)]  (5) 



DIAGNOSTYKA, Vol. 25, No. 2 (2024)  

Bouaouiche K, Menasria Y, Khalifa D: Bearing fault detection using a method involving absolute value … 

 

3 

The following equations express the real and 

imaginary parts of the analytic signal [20]: 

 𝑅(𝑡) = 𝑥(𝑡) = 𝐴𝐼(𝑡)𝑐𝑜𝑠⁡(𝑄𝐼(𝑡))  (6) 

 𝐼𝑚(𝑡) = 𝐴𝐼(𝑡)𝑗𝑠𝑖𝑛(𝑄𝐼(𝑡))  (7) 

The vibration signal is equal to the real part of the 

analytic signal, as shown in Eq. (6). 

Once the instantaneous amplitude and phase are 

obtained, the EFD method is applied to break them 

down into several functions (F). 

Empirical Fourier decomposition allows the 

decomposition of a signal into multiple components 

(F), as shown in the following steps [21]: 

- Determining the spectrum of the signal to be 

decomposed using the Fourier transform. 

 𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
 (8) 

- The separation limit of the spectrum is defined as 

follows: 

If: 0 ≤ 𝑛 ≤ 𝑁 and 𝑓𝑛 ≠ 𝑓𝑛+1 

 𝜔𝑛 = 𝑎𝑟𝑔min 𝐹̅(𝜔)  (9) 

If: 0 ≤ 𝑛 ≤ 𝑁 and 𝑓𝑛 = 𝑓𝑛+1 

 𝜔𝑛 = 𝑓𝑛  (10) 

- The construction of band-pass filters 𝑢(𝜔) is 

performed for each segmentation with a cut-off 

frequency⁡(𝜔𝑛 , 𝜔𝑛−1). 

 𝑢(𝜔) = {
1 𝑖𝑓⁡𝜔𝑛−1 ≤ |𝜔| ≤ 𝜔𝑛

0 𝑒𝑙𝑠𝑒
 (11) 

- The filtered signals, denoted as⁡𝑋𝑛(𝜔), originate 

from the decomposition of the signal to be 

decomposed. 

 𝑋𝑛(𝜔) = 𝑢(𝜔)𝑋(𝜔)  (12) 

𝑋𝑛(𝜔) = {
𝑋(𝜔) 𝑖𝑓⁡𝜔𝑛−1 ≤ |𝜔| ≤ 𝜔𝑛

0 𝑒𝑙𝑠𝑒
 (13) 

- The decomposed components in the time domain 

are obtained by applying the inverse Fourier 

transform. 

 𝐹𝑛(𝑡) = ∫ 𝑋𝑛(𝜔)𝑒
𝑗𝜔𝑡𝑑𝜔

+∞

−∞
 (14) 

- The sum of all the components allows for the 

reconstruction of the signal. 

 𝑥(𝑡) = ∑ 𝐹𝑛(𝑡)
𝑁
𝑛=1  (15) 

Step 2: Assess the impulsivity of functions (F) 

using statistical parameters. Kurtosis is a parameter 

defined by Eq. (16) [12].  

 𝐾𝑢 =
1

𝐿
∑ (𝑥𝑖−𝑥̅)

4𝐿
𝑖=1

(
1

𝐿
∑ (𝑥𝑖−𝑥̅)

2𝐿
𝑖=1 )

2  (16) 

For a healthy bearing, kurtosis is less than three, 

whereas for a failing bearing, kurtosis is greater than 

three [5]. Negentropy, Hoyer index, Gini index, and 

L2/L1 norm are used to assess the impulses of the 

fault signal, which are defined by the following 

equations: 

- L2/L1 norm [22]: 

 𝐿2/𝐿1 =
√∑ 𝑥𝑖

𝐿
𝑖=1

∑ |𝑥𝑖|
𝐿
𝑖=1

 (17) 

- Hoyer index (HI) [22]: 

 𝐻𝐼 =
√𝐿−

∑ |𝑥𝑖|
𝐿
𝑖=1

∑ 𝑥𝑖
2𝐿

𝑖=1

√𝐿−1
 (18) 

- Negentropy (NE) [23]: 

 𝑁𝐸 =
1

𝐿
∑ [

𝑥𝑖
2

𝑥̅
𝑙𝑛 (

𝑥𝑖
2

𝑥̅
)]𝐿

𝑖=1  (19) 

- Gini index (GI) [6]: 

 𝐺𝐼 = 1 − 2∑
𝑥𝑖

‖𝑥‖1

𝐿
𝑖=1 (

𝐿−𝑖+0.5

𝐿
)  (20) 

On the basis of parameter thresholds, we can 

determine whether the bearing is failing or healthy, 

as in the case of Kurtosis. However, the thresholds 

for the Hoyer index, Gini index, negentropy, and 

L2/L1 norm are unknown. Thus, we define the 

threshold values from the vibration signals of 

healthy bearings available in the CWRU database. 

The signals used are shown in Table (1) [24]. 

 
Table 1. 6205-SKF bearing signals 

Speed 

[rpm] 

Load 

[Nm/s] 

Signals Signal symbol 

1730 2206.47 100.mat S4 

1750 1470.98 99.mat S3 

1772 735.49 98.mat S2 

1797 0 97.mat S1 

 

Depending on the values of the parameters in 

Table (2), several thresholds differ in defining the 

bearing state. In this case, we propose a parameter 

(P) that is considered to be the product of all 

statistical parameters used to evaluate signal 

impulsivity. Parameter (P) enables the definition of 

a threshold and ensures the elimination of 

differences between parameters, as shown in the 

following equation: 

 𝑃 = 𝐾𝑢 × 𝐿2/𝐿1 × 𝑁𝐸 × 𝐺𝐼 × 𝐻𝐼  (21) 

 

Table 2. Parameter values of a healthy bearing 

Signals S4 S3 S2 S1 

Kurtosis 2.8658 2.7609 2.8066 2.8228 

Negentropy 0.7078 0.6805 0.6948 0.7069 

L2/L1 

norm 

1.2469 1.2369 1.2429 1.2478 

Hoyer 

index 

0.1999 0.1933 0.1972 0.2004 

Gini index 0.4109 0.4036 0.4084 0.4126 

Parameter 

(P) 

0.2077 0.1812 0.1951 0.2058 

 

According to the threshold of parameter (P), the 

bearing state can be defined as follows: 

 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1.25 × 𝑚𝑎𝑥⁡(𝑃) = 0.25  (22) 

 {
𝑖𝑓⁡𝑃 ≤ 0.25 ℎ𝑒𝑎𝑙𝑡ℎ𝑦⁡𝑏𝑒𝑎𝑟𝑖𝑛𝑔
𝑖𝑓⁡𝑃 > 0.25 𝑓𝑎𝑢𝑙𝑡𝑦⁡𝑏𝑒𝑎𝑟𝑖𝑛𝑔

 (23) 

The new vibration signal, which contains fault 

information, is formulated as follows: 

 {
𝐴𝐼𝑛(𝑡) = ∑𝐹𝐴𝐼(𝑡)

𝑄𝐼𝑛(𝑡) = ∑𝐹𝑄𝐼(𝑡)
𝑃 > 0.25  (24) 

 𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠⁡(𝑄𝐼𝑛(𝑡))  (25) 

Step 3: Noise suppression by signal filtering 

using the MHPO1 morphological operator 

developed by B.Chen et al. [25]. 

 𝑀𝐻𝑃𝑂1(𝑛) = 𝐴𝐻𝐷𝐸(𝑛) × 𝐴𝐻𝐶𝑂(𝑛)  (26) 

However, in this operation, we use a flat 

structuring element because it is very useful for 
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analyzing vibration signals and is simple. The length 

of a structuring element must satisfy the following 

condition [26]: 

 𝐿𝑆𝐸 <
𝑓𝑠

𝑓𝑐
 (27) 

The flat structuring element consists of zeros 

with a flat shape of zero height and specific length 

[27]. Equation (28) expresses the flat element in 

terms of scale (n) and length, which is equal to (n+2) 

[27]. 

 {
𝑆𝐸𝑖 = 0 𝑖 = 1,2, … (𝑛 + 2)

𝑆𝐸 = {𝑆𝐸1, 𝑆𝐸2, … , 𝑆𝐸𝑛+2}
 (28) 

In this step, the length of the structuring element 

used is equal to 12 on a scale of 5. 

Instead of using the Hilbert transform or the 

Teager–Kaiser energy operator as the final step in 

the method to demodulate the signal, determine the 

envelope spectrum, and then detect the fault, we 

develop the absolute value spectrum to identify 

faults by comparing theoretical fault frequencies 

with peak frequencies in the spectrum. The absolute 

value spectrum is defined as follows: 

 𝑥(𝑓) = ∫ |𝑥(𝑡)|𝑒−𝑗2𝑓𝜋𝑡𝑑𝑡
+∞

−∞
 (29) 

 

 

Fig. 1. Proposed method 

 

 

3. EXPERIMENTAL STUDY 

 

3.1. CWRU database 

The CWRU database presents bearing vibration 

signal measurements from a test strip comprising an 

electric motor with two bearings [24]. One bearing 

is positioned on the driver side with a type 6205-

SKF, and the other is positioned on the fan side with 

a type 6203-SKF [24]. Bearing vibration signals 

were collected using accelerometers mounted on 

bearing housings and recorded as MATLAB files 

[24]. Fault frequencies were calculated for each 

bearing component by multiplying the rotational 

speed in hertz (Hz) by the coefficients shown in 

Table 3 [24]. 

 
Table 3. Component coefficients 

Components 6203-SKF 6205-SKF 

Inner race 4.9469 5.4152 

Outer race 3.0530 3.5848 

Cage 0.3817 0.39828 

Ball 3.9874 4.7135 

 

To evaluate the effectiveness of the proposed 

method, we analyzed two vibration signals, one 

dependent on bearing 6205 and the other linked to 

bearing 6203. The characteristics of the signals are 

shown in Table (4) [24]. 

 
Table 4. Vibration signals 

Bearing 6203-SKF 6205-SKF 

Speed and Load 1730 RPM 

2237.1 Nm/s 

1750 RPM 

1491.4 Nm/s 

Defect diameter 0.1778 mm 0.1778 mm 

Fault frequency 142.63 Hz 157.94 Hz 

Sampling 

frequency 

12 kHz 48 kHz 

Component Inner race Inner race 

 

3.1.1. Results and discussions 

Case 1: Signal from the 6205-SKF bearing 

The amplitude (AI) and phase (QI) of the signal 

are shown in Figure 2. For the EFD method, the 

decomposition level is four, and the amplitude (AI) 

and phase (QI) functions are shown in Figures (3) 

and (4). 

 
Fig. 2. Amplitude and phase 
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Fig. 3. Phase functions 

 

 

Fig. 4. Amplitude functions 

 

According to the values of parameter (P) used to 

evaluate impulsivity (Table.5), the new vibration 

signal containing fault data can be reconstructed 

using the following formula: 

𝑥(𝑡) = [𝐹3𝐴𝐼(𝑡) + 𝐹4𝐴𝐼(𝑡)] × 𝑐𝑜𝑠(𝐹4𝑄𝐼(𝑡))  (30) 

 
Table 5. Values of parameter (P) 

Functions Phase (QI) Amplitude (AI) 

F1 0.0398 0 

F2 0.0559 0.0873 

F3 0.1524 0.6253 

F4 0.3003 3.0512 

 

In the spectrum of absolute values (Fig.5) of the 

new signal filtered by the MHPO1 operator, we 

observe a high-amplitude peak at a frequency of 

157.5 Hz. This value is very close to the fault 

frequency of the inner ring of bearing 6205-SKF 

(157.5 Hz ≈ 157.94 Hz). In this case, the faulty 

component is identified and located at the peak 

frequency. 

 
Fig. 5. Spectrum of absolute values 

 

Case 2: Signal from the 6203-SKF bearing 

The time and frequency domains of the vibration 

signal are shown in Fig. 6. 

 
Fig. 6. Vibration signals in the time and 

frequency domains 

 

The frequency domain, or signal spectrum, show 

several peaks at different frequencies, making fault 

detection impossible because of the shape 

complexity. To this end, we apply the proposed 

method to simplify the shape. The results of this 

method are summarized as follows: 

- The amplitude (AI) and phase (QI) of the signal 

are illustrated in Fig. 7, and the values of 

parameter (P) for the four functions obtained by 

the EFD method are shown in Table 6. According 

to parameter (P), the new vibration signal, which 

contains data dependent on defects, is expressed 

as follows: 

{
𝐴𝐼𝑛(𝑡) = 𝐹3𝐴𝐼(𝑡) + 𝐹4𝐴𝐼(𝑡)

𝑄𝐼𝑛(𝑡) = 𝐹3𝑄𝐼(𝑡) + 𝐹4𝑄𝐼(𝑡)
 (31) 

𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠(𝑄𝐼𝑛(𝑡))        (32) 

  
Table 6. Parameter (P) values of the 6203 bearing signal 

Functions Phase (QI) Amplitude (AI) 

F1 0.0382 0 

F2 0.0855 0.0705 

F3 0.2864 0.3322 

F4 0.2693 0.3562 
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Fig. 7. Signal amplitude and phase of bearing 

6203 

 

- The absolute value spectrum of the new filtered 

signal (Fig.8) illustrates a high-amplitude peak at 

the fault frequency of the inner ring of bearing 

6203-SKF (142.63 Hz≈142.1 Hz). 

 
Fig. 8. Absolute value spectrum of the 6203 

bearing signal 

 

3.2. Ottawa university database 

The vibration signals in this database were 

collected using a test strip consisting of a single-

phase electric motor operating at a constant speed of 

1750 rpm [28]. The motor shaft is supported by 

model 6203 ZZ ball bearings, and vibrations from 

these bearings are collected by a model PCB 623C01 

accelerometer mounted by a magnet on the bearing 

housing [28]. Vibration signal data were connected 

between the computer and sensor via a data 

acquisition system and recorded as MATLAB files 

with a sampling frequency of 42 kHz [28]. In 

addition, signals related to inner ring, outer ring, and 

cage faults were recorded under a load of 400 N, but 

no load was applied to signals related to ball faults 

[28]. 

We analyzed the fault signal of the outer ring of 

the NSK 6203 ZZ bearing according to Eq. (33) [11] 

and the parameters in Table 7 [28]. The fault 

frequency of the outer ring is 88.95 Hz. 

 𝐹𝑜𝑟 =
𝑧×𝐹𝑟

2
(1 −

𝑑

𝐷𝑚
cos⁡(𝑎))  (33) 

Table 7. Parameters of the NSK 6203 ZZ bearing 

Pitch diameter 28.5 mm 

Ball diameter 6.77 mm 

Number of balls 8 

 

3.2.1. Discussions and results 

On the basis of the EFD method decomposition 

of the signal amplitude and phase into four functions 

(F), the impulsivity of each function is evaluated by 

parameter (P). Then, on the basis of the values of 

parameter (P), the new signal is reformulated as 

defined by Eqs. (24 and 25). The main results are 

illustrated as follows: 

- The new vibration signal is expressed as follows: 

 {

𝐴𝐼𝑛(𝑡) = ∑ 𝐹𝑖(𝑡)
4
𝑖=2

𝑄𝐼𝑛(𝑡) = 𝐹4(𝑡)

𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠(𝑄𝐼𝑛(𝑡))

 (34) 

 
Table 8. Evaluation of impulsivity by parameter (P) 

Functions Phase (QI) Amplitude (AI) 

F1 0.0299 0 

F2 0.1537 0.4313 

F3 0.1558 0.3634 

F4 0.5752 2.7055 

 

- The spectrum of the absolute values of the 

filtered signal reveals a high amplitude peak at 

the outer ring fault frequency (88.44 Hz ≈ 88.95 

Hz), as shown in Figure 9. Thus, the fault is 

identified at the frequency of the peak. 

 
Fig. 9. Spectrum of the absolute values of the 

filtered signal 

 
4. DETECTION METHOD COMPARISONS 

 

    Several diagnostic methods exist, but the most 

popular and widely used are envelope analysis and 

the deconvolution method. The envelope analysis 

consists of two steps [29]: 

- Step 1: Filtering the vibration signal using a 

band-pass filter centered on the resonance 

frequency. This frequency is determined using 

methods such as Kurtogram and Autogram. 

- Step 2: Determination of the envelope spectrum 

using the Fourier and Hilbert transforms, as 
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described in equations (3) and (35). Next, the 

fault is detected by analyzing the peak frequency. 

 𝐴𝐼(𝑓) = ∫ 𝐴𝐼(𝑡)𝑒−𝑗2𝑓𝜋𝑡𝑑𝑡
+∞

−∞
 (35) 

    Thus, deconvolution methods such as MCKD are 

based on the extraction of signal pulses [11]. Then, a 

determination of the signal envelope spectrum 

obtained after the deconvolution operation is 

performed to detect the defect [11]. The steps of 

these methods are as follows [11]: 

- Step 1: Deconvolution of the signal using the 

MCKD method. 

- Step 2: Identify the envelope spectrum using 

equations (3) and (35). 

     The envelope analysis and fault detection 

approach using deconvolutions are applied to the 

outer ring vibration signal present in the University 

of Ottawa database, which was previously analyzed 

using the proposed method. Once the envelope 

analysis has been performed, a kurtogram of the 

signal illustrates a maximum value of spectral 

kurtosis (48.2), as shown in Figure (10). The two 

pass frequencies of the filter are 10500 Hz and 15750 

Hz, with a resonant frequency of 13125 Hz and a 

bandwidth of 5250 Hz. Then, in the envelope 

spectrum, we find a significant peak at the fault 

frequency (88.44 Hz ≈ 88.95 Hz), as shown in Figure 

(11). 

 

 

Fig. 10. Kurtogram 

 

Thus, the envelope spectrum determined after 

extracting the signal pulses via the MCKD 

deconvolution method, with the following input 

parameters: filter length 100, order 2, period 300, 

and number of insertions 10, shows a peak at the 

fault frequency, as shown in Figure (12). 

The proposed methods, envelope analysis, and 

deconvolution method give the same results, as 

shown in Figures (9, 11 and 12). This result is 

represented by a peak of high amplitude at the defect 

frequency. However, the amplitude values differ: 

3.29 × 10−5⁡𝑚/𝑠2 for the proposed method, 

0.001⁡𝑚/𝑠2 for the envelope analysis, and 0.01⁡𝑚/
𝑠2 for the deconvolution method. 

 
Fig. 11. Result of the envelope analysis 

 
Fig. 12. Result of the deconvolution method 

 

4.1. Influence of decomposition level 

 

The proposed method involves two parameters: 

the vibration signal and the number of functions to 

be decomposed using the EFD method. The effect of 

the number of functions on the final result is 

visualized according to the frequency of the peak 

present in the spectrum of absolute values, for each 

variation of the number of functions (F) between 2 

and 5. After applying the proposed method to the 

vibration signal for a variation in the number of 

functions from 2 to 5, the new vibration signals are 

shown in Table (9). 

In the spectrum of absolute values of each new 

signal, decomposition levels 2, 3, 4 and 5 show better 

results. This is illustrated in Figures (13 and 14). 

Increasing the decomposition levels from five, such 

as 6 and 10, shows the same results, indicating that 

the decomposition level has no influence. 

 
Table 9. New vibration signals 

Decomposition 

level 

New signals 

2 

{

𝐴𝐼𝑛(𝑡) = 𝐹2(𝑡)

𝑄𝐼𝑛(𝑡) = 𝐹2(𝑡)

𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠(𝑄𝐼𝑛(𝑡))
 

3 

{

𝐴𝐼𝑛(𝑡) = 𝐹2(𝑡) + 𝐹3(𝑡)

𝑄𝐼𝑛(𝑡) = 𝐹3(𝑡)

𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠(𝑄𝐼𝑛(𝑡))
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4 

{

𝐴𝐼𝑛(𝑡) = 𝐹2(𝑡) + 𝐹3(𝑡) + 𝐹4(𝑡)

𝑄𝐼𝑛(𝑡) = 𝐹4(𝑡)

𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠(𝑄𝐼𝑛(𝑡))
 

5 

{

𝐴𝐼𝑛(𝑡) = 𝐹4(𝑡) + 𝐹5(𝑡)

𝑄𝐼𝑛(𝑡) = 𝐹4(𝑡) + 𝐹5(𝑡)

𝑥(𝑡) = 𝐴𝐼𝑛(𝑡) × 𝑐𝑜𝑠(𝑄𝐼𝑛(𝑡))
 

 

 
Fig. 13. Absolute value spectrum for levels 2 and 3 

 

 
Fig. 14. Absolute value spectrum for levels 4 and 5 

 

5. CONCLUSION 

 

Following analysis of the vibration signals 

related to bearing faults, which are available in two 

separate databases, we can deduce that the spectrum 

of the original vibration signal is complex because of 

noise and the combination of useful and useless data. 

To obtain useful data, it is necessary to apply 

appropriate processing based on the evaluation of the 

impulsivity created by defects in the signals using 

parameters. In addition, evaluating the impulsivity of 

the instantaneous amplitude and instantaneous phase 

of the signal offers an excellent opportunity to 

reconstruct a new vibration signal containing 

information about the defects. 

There is a difference between the parameters 

used to measure the pulse, and each parameter can 

have a threshold to define whether the bearing is in 

a failed or healthy state. Due to several thresholds, 

there are differences in the selection of effective 

functions (F), determined by the EFD method. To 

avoid this difference, we propose a parameter (P) 

considered as a product between all parameters. 

Finally, we obtain a single important threshold that 

facilitates the reconstruction of an effective signal. 

The spectrum of absolute values enables faults to 

be detected simply and efficiently, based on peak 

frequency. It can be used as the final diagnostic step. 
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