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Abstract 

This paper suggests a hybrid method that combines the strengths of a bidirectional gated recurrent unit with 

a stacked denoising autoencoder to enhance the precision and effectiveness of diagnosing transmission faults 

in electric vehicles. The bidirectional gated recurrent unit makes advantage of these deep features for efficient 

fault pattern identification and classification. The results revealed that the hybrid algorithm had the best feature 

extraction ability for gear fault signals, and the signal features extracted by the algorithm were more 

concentrated and crossed each other less. The neurons in the hidden layer of the stacked denoising autoencoder 

was 180, and the number of neurons in the bidirectional gated recurrent unit was 160, and the hybrid algorithm 

performed best when the neurons in the hidden layer was 180 and the neurons in the bidirectional gated 

recurrent unit was 160. The hybrid algorithm performed best when the number of neurons was 160. The hybrid 

algorithm had the highest diagnostic accuracy for the faults, with the highest diagnostic accuracy of 97.98% in 

the balanced samples and 94.86% in the unbalanced samples. The hybrid algorithm constructed in the study 

effectively improves the diagnostic accuracy of transmission gear faults in electric vehicles.. 
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1. INTRODUCTION 

  

Electric vehicles have drawn a lot of attention as 

an alternative form of transportation in light of the 

growing severity of the energy crisis and 

environmental pollution. Because of their clean and 

efficient energy use, electric vehicles have also 

emerged as a key trend in the development of the 

contemporary automotive industry [1]. However, 

electric vehicle as a complex mechatronic product, 

in which the stability and safety of the electric 

gearbox, as a key component connecting the motor 

and the traveling system, are critical to the overall 

vehicle performance [2]. Accurate and timely 

identification of possible transmission defects has 

become a must to guarantee the regular functioning 

of electric vehicles, and fault diagnosis is crucial for 

enhancing the operational safety and dependability 

of electric vehicles [3]. Currently, fault diagnosis 

techniques for electric vehicle transmission mainly 

focus on traditional methods such as vibration and 

sound analysis, but these methods usually require 

specialized personnel to operate, and the diagnostic 

accuracy is insufficient in the changing operating 

environment [4]. The use of SDEA and bidirectional 

gated recurrent unit (Bi-GRU) in the proposed 

algorithm enhances the accuracy and efficiency of 
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fault diagnosis in electric vehicle transmission. The 

study proposes a composite algorithm based on 

stacked denoising autoencoder (SDEA) and Bi-GRU 

to improve the efficiency and accuracy of fault 

diagnosis of electric vehicle transmission using 

machine learning-based methods. The study uses 

SDEA for feature extraction. SDEA learns deep 

feature expressions from complex transmission 

signals by introducing noise to resist overfitting. 

These features are then combined with an advanced 

Bi-GRU model for fault mode identification and 

classification. Bi-GRU captures before-and-after 

information in time-series data through its bi-

directional structure, making the fault diagnosis both 

accurate and adaptable. 

The study combines Bi-GRU with SDEA to 

establish a hybrid SDEA-Bi-GRU model for gear 

fault diagnosis of gearboxes for electric vehicle 

transmissions. The research's primary contribution is 

the suggestion of a novel gear fault diagnosis model 

for electric vehicle transmission, which offers a fresh 

approach to fault diagnosis of electric vehicle. The 

study will consist of four parts: first, a review of the 

current research on fault diagnosis, SDEA, and Bi-

GRU for electric vehicle transmission. Second, 

research on electric vehicle transmission diagnosis 

based on the SDEA-Bi-GRU model. Third, 
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experimental validation of the SDEA-Bi-GRU 

model. And finally, an overview of the research  

 
2. RELATED WORKS 

  
Electric vehicle is currently the most compatible 

low-carbon and energy-saving vehicle type. To 

improve the effectiveness of battery fault diagnosis 

for electric vehicles, Li et al. proposed a new battery 

fault diagnosis method by combining a long and 

short-term memory recurrent neural network and an 

equivalent circuit model. The results showed that the 

method can achieve accurate diagnosis of potential 

battery faults and precise localization of thermal 

runaway batteries [5]. In order to prevent the damage 

caused by over discharge of lithium-ion batteries, 

Gan et al. proposed a two-layer over discharge fault 

diagnosis strategy based on machine learning. The 

first layer detected over discharge by comparing the 

cell voltage and cutoff voltage, while the second 

layer used a limit gradient boosting algorithm for 

previous over discharge detection. The results 

indicated that their proposed method has good 

results [6]. In order to diagnose switched reluctance 

motor bearing faults in electric vehicle power 

systems under variable speed conditions, Wang X et 

al. proposed a multi-sensor data fusion method. The 

method fused synchronously sampled current and 

vibration signals to estimate the cumulative rotor 

angle. The results demonstrated that the method does 

not require an additional tachometer and can be used 

for online fault diagnosis of switched reluctance 

motors under variable speed conditions [7]. To 

protect the safe operation of electric vehicle 

batteries, Long et al. proposed a model-based fault 

diagnosis scheme for current and voltage sensors. By 

comparing the difference between the true state of 

charge and the estimated state of charge, the 

occurrence of faults was determined and faulty 

sensors were isolated. The results showed that the 

method can effectively diagnose battery faults [8]. 

To overcome the challenges of battery fault 

diagnosis for electric vehicles, reduce the 

dependence on the amount of data and improve the 

diagnostic accuracy and speed, Deng et al. proposed 

a multi-classification support vector machine (SVM) 

based fault diagnosis method. The results revealed 

that the method improved the training speed and 

accuracy and achieved satisfactory results in battery 

fault diagnosis of electric vehicles with small sample 

training set [9]. 

Both SDEA and Bi-GRU are one kind of deep 

learning networks. To solve the problem of SDAE's 

ability to extract bearing fault feature information 

under multiple operating conditions and strong 

noise, Jia et al. proposed a bearing health monitoring 

and fault diagnosis model based on variational mode 

decomposition, continuous wavelet transform and 

sparrow search algorithm optimized for SDAE. The 

outcomes revealed that the model outperforms other 

methods in terms of diagnostic accuracy, 

generalization performance and noise immunity 

[10]. To analyze the fault diagnosis method for 

rolling bearings, Che et al. addressed a SDEAFD 

model based on convolutional neural network 

(CNN). The model can denoise and dimensionalize 

the raw vibration signal data. The outcomes revealed 

that the model in improved the accuracy by 3%-13% 

over the traditional model and a single deep learning 

model [11]. A approach based on data augmentation 

and Bi-GRU was proposed by Fu B et al. The method 

utilized the principal factor correlation index to 

select features and used Mixup technique to enhance 

the data. The approach enhanced the model's 

resilience and capacity for generalization while 

maintaining a high level of prediction accuracy, 

according to the findings [12]. To solve the category 

imbalance problem, A weakly supervised learning-

based classification technique was presented by Liu 

H et al. The method employed bi-directional gated 

recursive units to construct the fault diagnosis 

model, and proposed a new weighted cross-entropy 

function as the loss function to reduce the effect of 

noise. The method's efficacy and superiority were 

demonstrated by the experimental results [13]. 

In summary, fault detection of electric vehicle 

components is a current research focus. However, 

most research has been centered on automotive 

battery fault detection, with fewer studies on other 

key components. The gearbox is a crucial component 

of an automobile. Any failure of this component can 

directly impact the use of the automobile. Therefore, 

this study aims to detect faults in the electric vehicle 

transmission system. Commonly used fault detection 

methods include SDEA and Bi-GRU, but each has 

its own shortcomings. This study proposes to 

combine the two methods for fault detection in the 

gear system of electric vehicle transmission   

 

3. FAULT DIAGNOSIS OF ELECTRIC 

VEHICLE TRANSMISSION BASED ON 

SDEA-BI-GRU MODELING 

 

Gearbox gear failure is one of the most common 

failures in electric vehicles. Section 3 mainly focuses 

on the study of diagnostic methods for transmission 

gear failure in electric vehicles. And it is developed 

in two directions, the first part is the SDEA-Bi-GRU 

hybrid network study, and the second part is the gear 

fault diagnosis based on SDEA-Bi-GRU 

 

3.1. SDEA-Bi-GRU Hybrid Networks 

SDEA is a deep learning model that performs 

feature learning and noise reduction by stacking 

multiple layers of self-encoders [14-15]. Self-

encoder is an unsupervised learning model that 

encodes and decodes the input data and learns a low-

dimensional representation of the input data by 

minimizing the reconstruction error [16]. Stacked 

auto-encoders, on the other hand, stack multiple 

auto-encoders together, with the hidden layer of each 

auto-encoder serving as the input to the next auto-
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encoder. And Figure 1 depicts the particular 

structure. 

 
Fig. 1. SDEA network structure 

 

In stacked noise-reducing self-coding networks, 

each self-encoder introduces noise to make the input 

data more robust, which forces the model to learn 

more useful and abstract features. Usually Gaussian 

noise or randomly interrupted input data is used as 

noise. Pre-training and fine-tuning are the two 

phases of the SDEA network training process. In the 

pre-training phase, signal-to-noise samples with 

additional noise are fed into the SDEA and mapped 

to the hidden layer in equation (1). 

𝑦 = 𝑓𝜃(𝑥̃) = 𝑠(𝑊𝑥̃ + 𝑏) (1) 

In equation (1), 𝑥̃ denotes the input and 𝑓𝜃(⬚) 

denotes the encoding function. 𝑊A denotes the 

encoding weights and 𝑏 denotes the bias. 𝑠 denotes 

the mapping function, 𝜃 denotes the set parameters 

and 𝑦 denotes the output. The mapping result is 

subsequently decoded and reconstructed in equation 

(2). 

𝑥̂ = 𝑔𝜃1
(𝑦) = 𝑆(𝑊1𝑦 + 𝑏1) (2) 

In equation (2), 𝑔𝜃1
(𝑦) denotes the decoding 

function and 𝑊1 denotes the decoding weights. 𝑏1 

denotes the decoding bias, 𝑆 denotes the decoding 

mapping function, and 𝜃1 denotes the decoding set 

parameters. The fine-tuning part means that the 

weights in the pre-training are used as initial 

parameters to adjust the parameters of SDEA, and 

the fine-tuning of SDEA is a supervised learning 

process. Recurrent neural network (RNN) is a type 

of traditional neural network, but traditional neural 

networks are not able to correlate information while 

processing it. Therefore, scholars proposed RNN, in 

common RNN, a neuron needs to receive the 

information processed is more complex. At the 

current moment 𝑡, the neuron needs to receive not 

only the input 𝑥𝑡, but also the state ℎ𝑡−1 of the 

previous moment, as shown in equation (3). 

ℎ𝑡 = 𝑓(𝑠𝑡) = 𝑓(𝑈𝑥𝑡 + 𝑊ℎ𝑡−1) (3) 

In equation (3), 𝑓 denotes the activation function, 

ℎ𝑡 denotes the state of the hidden unit at the 𝑡 

moment, and 𝑈 denotes the weight matrix. Gated 

recurrent unit (GRU) is a type of RNN unit, which 

has good results when dealing with sequential data 

[17]. GRU is improved on long short-term memory 

network (LSTM). GRU adds an update gate and a 

reset gate to the network. The update gate controls 

how the network stores data and ignores information 

from prior inputs, while the reset gate controls how 

the network merges data from previous inputs with 

the data that is currently being input [18]. The output 

of the update gate is shown in equation (4). 

𝑔𝑡 = 𝜎(𝑏𝑔 + 𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1) (4) 

In equation (4), 𝑔𝑡 denotes the update gate output 

and 𝜎 denotes the sigmoid activation function. 𝑥𝑡 

denotes the input data at the current moment and 

ℎ𝑡−1 denotes the hidden unit information output at 

the 𝑡 − 1 moment. The reset gate output is shown in 

equation (5). 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (5) 

In equation (5), 𝑟𝑡 denotes the reset gate output. 

the candidate hidden state expression in the GRU is 

shown in equation (6). 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊⬚𝑥𝑡 + 𝑈⬚(𝑟𝑡ℎ𝑡−1) + 𝑏ℎ) (6) 

In equation (6), ℎ̃𝑡 denotes the candidate hiding 

state. The hidden state can be represented by 

equation (7). 

ℎ𝑡 = 𝑔𝑡 • ℎ̃𝑡 + (−𝑔𝑡 + 1)ℎ𝑡−1 (7) 

The output of GRU is shown in equation (8). 

𝑦𝑡 = 𝜎(𝑊0ℎ𝑡) (8) 

GRU is a one-way learning model, in the learning 

process, the last unit of the state information is 

missing, and the more forward, the more serious the 

missing information, to address this problem, 

scholars introduced a two-way learning mechanism 

in GRU. After the introduction of the two-way 

learning mechanism, it is Bi-GRU. Additionally, 

Figure 2 depicts the network's topology. 

 
Fig. 2. Bi GRU structure 

 
Bi-GRU uses all the information of the unit in 

the past and the future in a bidirectional learning 

mechanism to complement the features lost in the 

training process of the GRU. And equation (9) 

displays the model's output formula. 

ℎ𝑡 = [ℎ⃗ 𝑡 ⊕ ℎ⃖⃗𝑡] (9) 

In equation (9), ℎ⃗ 𝑡 denotes the forward learning 

result. ℎ⃖⃗𝑡A denotes the reverse learning result. 

The gear system shown in Figure 3 is a dual 

transmission gear system with two clutches, an inner 

transmission shaft, an outer transmission shaft, and 

six different speed gears. In the working process of 

the gear system, the appearance of certain faults can 

cause the transmission to stop working, therefore, 

the detection of faults in the gear system of the 

transmission is an important research direction for 

automobile safety. The vibration signal generated by 
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Fig. 3. Gear system structure 

 

the gears during the gearing process is non-

stationary. This non-stationary vibration signal 

produces a great disturbance to the accurate 

diagnosis of gear failure. Since the gear's vibration 

system is nonlinear, study on its dynamics must 

simplify its dynamics equation. And the simplified 

dynamics equation is shown in equation (10). 

𝑀𝑟𝑥̈ + 𝐶𝑥̈ + 𝑘(𝑡)𝑥 = 𝑘(𝑡)𝐸1 + 𝑘(𝑡)𝐸2𝑡 (10) 

In equation (10), 𝑀𝑟 denotes the equivalent 

mass of the gear pair and 𝑥 denotes the relative 

displacement on the gear meshing line. 𝐶 denotes the 

damping of the gears when they mesh, 𝑘(𝑡) denotes 

the gear mesh stiffness shape. 𝐸1 denotes the average 

static elastic deformation of the gear after being 

loaded. 𝐸2𝑥 denotes the relative displacement 

between gears that mesh with each other as a result 

of errors or failures that may occur in the gears. The 

left part of equation (10) represents the vibration 

characteristics of the gear in the working state, and 

the right part represents the dynamic loads of the 

gear. The dynamic loads of the gear system include 

the inherent vibration of meshing, and the vibration 

caused by the gear stiffness and gear failure, and the 

second vibration can be explained for various failure 

conditions in the gear. Since the meshing stiffness of 

the gears in a gear system varies with the meshing 

rotation of the gears, equation (11) illustrates that the 

meshing frequency of the gear system is equal to the 

frequency of change of the meshing stiffness. 

𝑓𝑧 =
𝑛𝑂𝑧

60
 (11) 

In equation (11), 𝑓𝑧 denotes the meshing 

frequency of the gear and 𝑛 denotes the harmonics. 

𝑂 denotes the revolutions of the shaft where the gear 

is located, and 𝑧 denotes the number of gear teeth. 

Equation (12) illustrates that the gear's vibration 

signal is made up of the meshing frequency and the 

high harmonics. 

𝑥(𝑡) = ∑ 𝐴𝑝 𝑐𝑜𝑠(2𝜋𝑛𝑓𝑧 + 𝜙𝑝)
𝑃
𝑝=0  (12) 

In equation (12), denotes the total number of 

gear meshing frequency orders, and 𝐴𝑝 denotes the 

amplitude of the 𝑝th order gear meshing frequency. 

𝜙𝑝 denotes the initial phase of the 𝑝th order meshing 

frequency. The fault produced by the gear is the 

excitation source of this type of vibration, which is 

based on the rotation period of the gear shaft as the 

period. Therefore, the vibration information will 

contain the rotation frequency and multiplicity of the 

faulty gear. When the fault occurs, not only vibration 

will be generated, but also shocks will be generated 

during the meshing process, causing the signal to 

generate side bands, at which point, equation (12) 

will be rewritten as equation (13). 

𝑥(𝑡) = ∑ 𝐴𝑝 × [1 + 𝑎𝑝(𝑡)] 𝑐𝑜𝑠 (2𝜋𝑛𝑓𝑧 + 𝜙𝑝 +𝑃
𝑝=0

𝑏𝑝(𝑡)) (13) 

In equation (13), 𝑎𝑝(𝑡) denotes the amplitude 

modulation function of the 𝑝th order engagement 

frequency. 𝑏𝑝(𝑡) denotes the frequency modulation 

function of the 𝑝th order meshing frequency. The 

modulation frequency includes the station east 

frequency of the shaft where the faulty gear is 

located and the multiplicity, therefore, equation (13) 

can be transformed into equation (14). 

 
 𝑥(𝑡) − ∑ 𝐴𝑝 × [1 +𝑃

𝑝=0

∑ 𝐵𝑚 𝑐𝑜𝑠(2𝜋𝑛𝑓𝑛𝑡)𝑀
𝑚=0 ] 𝑐𝑜𝑠(2𝜋𝑛𝑓𝑛 +

∑ 𝐺𝑚 𝑠𝑖𝑛(2𝜋𝑛𝑓𝑛𝑡)𝑀
𝑚=0 ) (14) 

In equation (14), 𝑀 denotes the maximum 

modulation order. 𝐵𝑚 denotes the amplitude 

modulation coefficient of the 𝑚th order rotation 

frequency modulation, and Gm denotes the 

frequency modulation coefficient of the mth order 

rotation frequency modulation. fn denotes the 

rotation frequency of the rotating shaft, and its 

calculation is shown in equation (15). 

fz = Zfn (15) 

In the previous paper, two network structures, 

SDEA and Bi-GRU, are proposed, and the study 

combines them to construct a hybrid SDEA-Bi-GRU 

network for transmission gear fault diagnosis. Model 

training and model testing comprise the two main 

components of this network's overall architecture, 

which is seen in Figure 4. 

 
Fig. 4. Basic framework of fault diagnosis 

model 
 

Based on the basic framework of the model, the 

study redesigned the network structure of the SDEA-

Bi-GRU model. The hybrid network structure 
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consists of three parts, which are SDEA structure, 

Bi-GRU structure and Softmax classifier structure. 

When performing fault diagnosis, the time-domain 

signal of the transmission gear system is used as the 

input data to the SDEA structure, in which noise 

reduction is performed. The signal is then fed into 

the Bi-GRU in order to extract the signal's fault 

features. Ultimately, the fault signal is categorized 

using the Softmax classifier, allowing the diagnosis 

of the gear failure of electric vehicle transmission to 

be finished. Figure 5 depicts the precise architecture 

of the hybrid network. 

 
Fig. 5. Hybrid network structure 

 

During the training process of hybrid networks, 

it is necessary to prevent neural networks from 

overfitting. Dropout technique is a common 

regularization technique used to reduce the 

occurrence of overfitting in neural networks. 

Dropout has a probability that the output of each 

neuron will be randomly discarded during the 

training process. This operation forces the neural 

network to learn redundant features and reduces the 

collaborative dependency between neurons, 

improving the generalization performance of the 

network. And Dropout can randomly disconnect 

connections during training and then keep all 

connections for prediction, reducing the neural 

network's dependence on colorful neurons thus 

preventing the hybrid network from overfitting 

phenomenon during training. Figure 6 depicts the 

Dropout network's structure. 

 
Fig. 6. Dropout network structure 

 

3.2. SDEA-Bi-GRU based gear fault diagnosis 

Transmission is a common basic component in 

automobiles with high ratios and compact structural 

design, it is very common in industrial applications. 

A transmission gear system is a mechanical system 

capable of varying the ratio between the drive wheels 

and the engine to provide different speeds and torque 

outputs. The main component of the gear system is a 

series of gears, which work in conjunction with 

devices such as drive shafts, main shafts and 

clutches. The structure of the transmission gear 

system is shown in Figure 3. 

4. EXPERIMENTAL VALIDATION OF THE 

EFFECT OF SDEA-BI-GRU MODELING 

 

The study constructed a hybrid SDEA-Bi-GRU 

neural network and used the network for 

transmission gear fault diagnosis of electric vehicle. 

The main content of this chapter is the verification 

of the practical effect of the model, which is divided 

into three parts. The model's training results are 

analyzed in the second part, the experimental 

environment and parameters are set, and the model's 

impact on practical application is examined in the 

third part. 

 

4.1. Experimental environment and parameter 

settings 

All the experiments of the study are completed 

using the equipment at the time of the experiment, 

the operating system is windows 7 professional, the 

CPU is Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz 

3.20 GHz, the RAM is 16GB, and all the data 

analyzing software is carried out on the MATLAB 

platform. In addition to the basic experimental 

environment, the study also builds a fault simulation 

test bed, which is shown as a 3D model in Figure 7. 

Fig. 7. Gear fault simulation test bench 
 

After completing the construction of the 

experimental environment, the study conducts 

training tests on SDEA and Bi-GRU. In the training, 

the input noise ratio of the SDEA structure is 0.3, the 

discard rate of the network structure is set to 0.1, the 

learning rate is set to 0.001, the maximum iterations 

are 600, and the decay rate is 0.95 and 0.99. The 

training results are shown in Figure 8. 

Figure 8(a) illustrates how the neurons affects 

SDEA performance. The diagnostic time of SDEA 

for fault occurrence increases with the neurons; for 

example, when the neurons rises from 80 to 200, the 

diagnostic time of SDEA increases by around 50 

minutes overall. The highest score of 94.8% is 

reached by SDEA's diagnostic accuracy when the 

buried layer has 180 neurons. The SDEA structure's 

diagnostic accuracy rises with the neurons when 

there are fewer than 180 neurons. When the neurons 

exceed 180, the accuracy of the diagnosis declines as 

the neurons rises. It takes 37 minutes to diagnose 

SDEA when there are 180 neurons in the brain. 

Figure 8(b) illustrates how the quantity of neurons 

affects Bi-GRU performance. Both the changes in 

diagnostic time and diagnostic accuracy are similar 

to Figure 8(a). The diagnosis accuracy of Bi-GRU 

reaches the maximum value of 98.0% when the 
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number of neurons is 160, and at this time, the 

diagnosis of Bi-GRU takes 45 min. The study 

determined that there should be 180 neurons in the 

hidden layer of the SDEA structure and 160 neurons 

in the hidden layer of the Bi-GRU structure, 

respectively, based on the training results. 

 

4.2. Fault diagnosis results for SDEA-Bi-GRU 

models 

The hybrid model constructed by the study is 

proposed based on SDEA and Bi-GRU, therefore, 

the study compares the feature extraction ability of 

SDEA and SDEA-BiGRU for gear failure signals, 

and the results are shown in Figure 9. 

Figure 9(a) shows the feature extraction 

capability of the SDEA structure for the gear states 

in 6. There is a crossover between the scatter region 

of normal gears and mildly cracked gears, a 

crossover between mildly cracked and heavily 

cracked, a crossover between heavily cracked and 

broken teeth, and a crossover between broken teeth 

and tooth wear. In the gear failure states extracted 

from the SDEA structure, there is a serious crossover 

between the different fault feature signals and the 

respective scatter regions are more dispersed. Figure 

9(b) shows the feature extraction capability of 

SDEA-Bi-GRU for six gear states. The model has a 

better extraction effect on gear failure states, and 

there is only a crossover between normal gears and 

mild cracks, and there is no crossover for the rest of 

the various types of faults, and the regional 

distribution of the various types of faults is more 

concentrated. The extraction effect of SDEA-Bi-

GRU on gear failure signal features is much better 

than that of SDEA structure. In the simulation 

experiment, the study controls the speed of the 

gearbox so that the intensity of the vibration signal  

is reduced from 70 Hz to 30 Hz. And 12 different 

sample sets are formulated in accordance with each 

10 Hz drop as a sample set, which is divided into four 

sample sets of D, B, A and C. Table 1 presents the 

findings of a comparison of the diagnostic 

procedures' accuracy. 
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Fig. 8. Effect of neuron number on the performance of SDEA and Bi-GRU 

 

 
Fig. 9. Feature extraction capabilities of different network structures 
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Fig. 10. Comparison of diagnostic accuracy for imbalanced samples 
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Table 1. Comparison of diagnostic effects of different 

methods 

Sample 
num. 

SDEA-

Bi-
GRU 

(%) 

RNN 
(%) 

CNN 
(%) 

SDEA 
(%) 

DBN 
(%) 

1 97.98 94.65 89.37 79.63 76.54 

2 86.54 91.35 78.64 75.62 71.62 

3 88.69 84.35 88.66 74.89 75.54 

4 86.94 79.64 83.15 74.32 74.39 

5 96.34 84.56 78.64 71.84 73.34 

6 92.51 86.54 75.63 65.36 68.94 

7 94.56 86.34 74.31 68.72 62.38 

8 96.66 88.92 88.64 78.35 61.57 

9 92.36 89.65 85.61 77.51 69.66 

10 89.67 87.61 84.67 74.94 63.54 

11 88.97 82.36 86.34 76.53 68.68 

12 95.64 84.65 82.79 75.18 69.75 

 

CNN, deep belief network (DBN), and RNN are 

all common fault diagnosis networks. Table 1 

illustrates how utilizing distinct sample sets for the 

model's training and sample sets will significantly 

affect the model's diagnostic accuracy. All the 

algorithms have the highest accuracy in sample set 

1. The highest diagnostic accuracy is 76.54% for 

DBN, 89.37% for CNN, 94.65% for RNN, 79.63% 

for SDEA, and 97.98% for SDEA-Bi-GRU. The 

proposed algorithm of the study is the most effective 

for fault diagnosis of gears. To simulate the actual 

situation as much as possible, the study adjusted the 

ratio of normal gears to faulty gears in the sample 

set. And Figure 10 displays the test findings. 

Figure 10(a) shows the comparison of the 

accuracy of DBN and CNN with SDEA-Bi-GRU. 

CNN's diagnostic accuracy in unbalanced samples is 

at a better level, with a maximum diagnostic 

accuracy of 90.27%, while DBN's diagnostic 

accuracy is at a lower level, with a maximum of only 

85.33%. SDEA-Bi-GRU has a diagnostic accuracy 

of 94.86%, which is much higher than the other two 

algorithms' accuracy in unbalanced samples. Figure 

10(b) shows the accuracy comparison of SDAE and 

RNN with SDEA-Bi-GRU. The highest diagnosis 

accuracy of both SDAE and RNN can reach more 

than 90%, but it is still lower than the fault diagnosis 

accuracy of SDEA-Bi-GRU. In unbalanced samples, 

the diagnosis accuracy of SDEA-Bi-GRU model for 

transmission gear failure is also better than the rest 

of the algorithms. Because the signal-to-noise ratio 

(SNR) also has a significant impact on fault 

diagnosis, the study also examines the diagnosis 

accuracy of SVM using SDEA-Bi-GRU and back 

propagation (BP) neural networks under various 

SNRs. The findings are displayed in Figure 11. 
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Fig. 11. The impact of signal-to-noise ratio on 

algorithm performance 

 

In Figure 11, the accuracy of the algorithms 

increases as the SNR increases, with the BP Neural 

Network showing the greatest improvement in 

accuracy and the SDEA Bi-GRU showing the least 

change in accuracy. The fault diagnosis accuracy of 

the BP neural network is 72.13%, the fault diagnosis 

accuracy of the SVM is 81.65%, the fault diagnosis 

accuracy of the RNN is 90.47%, the fault diagnosis 

accuracy of the SDEA is 95.43%, and the fault 

diagnosis accuracy of the SDEA-Bi-GRU is 97.68% 

when the SNR is 0 dB. At a SNR of 10 dB, the fault 

diagnosis accuracy for BP neural networks is 

93.76%, the fault diagnosis accuracy for SVMs is 

95.63%, the fault diagnosis accuracy for RNNs is 

97.86%, the fault diagnosis accuracy for SDEA is 

98.63%, and the fault diagnosis accuracy for SDEA-

Bi-GRU is 99.37%. The fault diagnosis accuracy for 

BP neural networks increases by a total of 21.63%, 

the fault diagnosis accuracy for SVMs increases by 

a total of 13.98%, the fault diagnosis accuracy of 

RNN is 7.39%, the fault diagnosis accuracy of 

SDEA is 3.20%, and the fault diagnosis accuracy of 

SDEA-Bi-GRU is 1.69%. The SNR has the least 

effect on SDEA-Bi-GRU and the algorithm has the 

highest fault diagnosis accuracy. 

 

5. CONCLUSION 

 

Aiming at the fault diagnosis problem of electric 

vehicle transmission, the study successfully 

developed a hybrid algorithm based on SDEA and 

Bi-GRU, which is used to enhance the diagnosis of 

gear failure of electric vehicle transmission. The 

SDEA-Bi-GRU algorithm enhances the accuracy 

and efficiency of the gear fault diagnosis of 

gearboxes by efficiently combining the feature 

extraction capability of the denoising selfencoder 

with the highly efficient time-series analyzing 

capability of the Bi-GRU. The experimental results 

demonstrated that the SDEA-Bi-GRU algorithm was 

able to accurately extract the key features when 

dealing with complex transmission signals, and the 

hybrid algorithm extracted the fault signal feature 

regions that were concentrated and had less 

crossover between the regions. The hybrid algorithm 

achieved the highest fault diagnosis accuracy of 

97.98% in balanced samples and 99.37% in 

unbalanced samples, and the remaining algorithms 

achieved the highest accuracy of 94.65% in balanced 
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samples and 98.63% in unbalanced samples, and the 

hybrid algorithm had the best diagnostic effect on the 

faults. Additionally, the SNR of the input signal had 

minimal effect on the hybrid algorithm. As the SNR 

increased, the diagnostic accuracy of the hybrid 

algorithm fluctuated only 1.69%, while the rest of 

the algorithms fluctuated at least 3.20%. The hybrid 

algorithm demonstrated significant advantages over 

traditional diagnostic methods and other machine 

learning algorithms in terms of fault diagnosis of 

electric vehicle transmission. The study improves 

the efficiency and accuracy of fault diagnosis of 

electric vehicle transmissions and provides technical 

support for the safe operation and maintenance of 

electric vehicles. Future work will focus on 

optimizing the algorithm's performance, expanding 

its application to more electric vehicle critical 

components, and exploring its practicality in real 

industrial environments. 
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