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Abstract 

In mechanical equipment, if bearing components fail, it can cause serious equipment damage and even 

threaten human life safety. Therefore, equipment bearings fault diagnosis is of great meaning. In the study of 

bearing fault diagnosis, an improved gray wolf optimization algorithm is put forward to optimize the support 

vector machine model. The model improves the convergence factor of the algorithm, and then optimizes the 

penalty factor and KF parameters of the support vector machine to enhance the accuracy of fault classification. 

At the same time, in the problem of fault identification, the introduction of adaptive noise set empirical mode 

decomposition and the combination of permutation entropy are studied to minimize the impact of noise on the 

identification model. The experimental outcomes indicated that the algorithm proposed in the study had an 

average fitness value and a standard deviation fitness value of 0 in the benchmark test function and 94.55% 

accuracy in overall fault identification. The permutation entropy of the vibration signal in the normal state of 

the bearing was within the range of [0.13, 0.52], which has a more stable state compared to the fault state. The 

results show that the improved grey Wolf optimization algorithm is applied to the optimization of support vector 

machine, combined with the adaptive noise set empirical mode decomposition and permutation entropy, and 

the identification and classification results of bearing faults are successfully improved, making the proposed 

method feasible in bearing fault diagnosis, and providing a more effective scheme for fault diagnosis. 
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List of Symbols/Acronyms 

BFD – Bearing Fault Diagnosis, 

BFs – Bearing Faults, 

DBN –Deep Belief Network, 

DSOGIFLL– Generalized Integrator with Frequency 

Locked Loop, 

GA – Genetic Algorithm, 

GWO – Grey Wolf Optimization, 

ICEEMDAN – Improve Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise, 

IMF – Instant Mode Function, 

KF – Kernel Function, 

KMGWO – K-means Clustering Grey Wolf Optimization, 

LSSVR– Least Squares Support Vector Regression, 

PE– Permutation Entropy, 

PSO – Particle Swarm Optimization, 

SCA– Sine Cosine Algorithm, 

SVM – Support Vector Machines, 

 

1. INTRODUCTION 

 

Bearings are a widely used component in 

contemporary mechanical equipment, which is 

mainly used to limit relative motion to only allow the 

desired motion, reduce friction and support rotating 

parts. In operation, the bearing bears loads from 
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different directions, and if a failure occurs, it will 

cause increased friction and may even lead to 

damage to mechanical equipment [1]. Therefore, 

accurate Bearing Fault Diagnosis (BFD) is very 

important. However, due to the complexity and 

diversity of bearing working conditions, as well as 

the uncertainty of environmental conditions, BFD 

has become a nonlinear and non-stationary problem 

[2]. Currently, traditional methods have limitations 

in dealing with such nonlinear and non-stationary 

problems, leading to often unsatisfactory diagnostic 

results. With the development of science and 

technology, more and more methods have been put 

forward for BFD, especially intelligent algorithms 

play an important role in it. Neural networks, support 

vector machines (SVM), deep learning, etc., have 

been widely used in this field in recent years. These 

methods are particularly suitable for nonlinear and 

non-stationary feature recognition tasks because 

they are able to identify underlying patterns and 

trends from complex data. But they require large-

scale training data, and the training and optimization 

process often consumes a large amount of computing 

resources [3-4]. Furthermore, with the goal of 

solving this problem, an improved Grey Wolf 
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Optimization (GWO) algorithm-based fault 

diagnosis model for optimizing SVM was raised. 

This model improved the GWO algorithm’s 

convergence factor, and then optimized the penalty 

factor and kernel function (KF) parameters of the 

SVM. In the study of fault identification problems, 

Improve Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (ICEEMDAN) 

was raised and combined with permutation entropy 

(PE) to minimize the influence of noise on the 

identification model and make fault diagnosis 

outcomes more accurate. The main innovation of the 

research lies in the usage of the improved GWO 

algorithm to the optimization of SVMs for the first 

time. And combined with ICEEMDAN and PE, it 

can successfully improve the recognition and 

classification results of bearing faults (BFs). This 

new type of fault diagnosis method not only 

performs well in handling complex and non-

stationary BF identification problems, but also 

significantly improves the accuracy of fault 

classification. The contribution of the research 

mainly contains two aspects: firstly, a novel and 

effective BFD method has been proposed. Secondly, 

this method has certain advantages in BF 

identification and classification, and has the 

potential to handle nonlinear and non-stationary 

problems. The research structure mainly includes 

four parts. The first part summarizes the research 

results of domestic and foreign scholars on the GWO 

algorithm and BFD. The second part is to construct 

an improved GWO-SVM BFD model, and further 

optimize the model by introducing ICEEMDAN and 

PE. The third part is to conduct performance and 

comparison analysis of the constructed model. The 

final part summarizes the performance status of the 

model, analyzes the shortcomings in the research, 

and points out future research directions. 

 

2. RELATED WORKS 

 

As the continuous growth of intelligent 

technology, the GWO algorithm has gradually been 

mentioned and improved in fault identification 

problems, and many domestic and foreign scholars 

have conducted research and analysis on the GWO 

algorithm. Diab et al. conducted research on variants 

of the GWO algorithm to evaluate the unknown 

parameters of the proton exchange membrane fuel 

cell model. And the also applied the algorithm to 

three commercial proton exchange membrane fuel 

cell stacks to calculate the sum of squared errors 

based on parameter estimation results and 

experimental testing results. Through simulation 

results, the improved GWO algorithm could promote 

the optimization efficiency of the 250 W heap to 

99.97 [5]. Yang et al. proposed a combined 

algorithm based on the Sine Cosine Algorithm 

(SCA) and GWO algorithm to optimize the 

regression prediction model of the Least Squares 

Support Vector Regression (LSSVR) algorithm. 

This method used an improved GWO algorithm to 

search the population to get the optimal least squares 

support vector machine parameter solution. The 

experiment findings illustrated that this method’s 

fitting accuracy reached 86.8%, which improved the 

fitting accuracy by 5% compared to the original 

model [6]. Mohammed et al. conducted research on 

GWO algorithms with the main aim of enhancing the 

limitations of the search process for wolf packs 

attacking gray wolves. The study uses the K-means 

clustering algorithm to strengthen the effectiveness 

of the original GWO, and the novel algorithm is 

named the K-means Clustering Gray Wolf 

Optimization (KMGWO) algorithm. The survey 

outcomes indicate that KMGWO has a higher 

efficiency improvement compared to GWO. To 

assess the effectiveness of KMGWO, it was utilized 

to solve the CEC2019 benchmark test function, and 

its performance was better than other meta heuristic 

algorithms [7]. Doumbia et al. introduced a direct 

power control technology based on instantaneous 

power theory, which uses the GWO algorithm to 

optimize the PI controller. This method allowed for 

the control of active and reactive power and 

improved the quality of the generated electricity. A 

Dual Second-order Generalized Integrator with 

Frequency Locked Loop (DSOGI-FLL) was used to 

ensure grid synchronization. A new objective 

function was defined and the optimization process 

was executed using the GWO. A simulation study 

was conducted on the grid connected system based 

on three-phase inverters. The superiority of the new 

method has been demonstrated through analysis and 

comparative research on different operating modes 

[8]. 

In fault identification and diagnosis, scholars 

have proposed many different methods for 

performance verification. Chen et al. proposed a new 

simple and effective deep attention mechanism 

network that combines channel and spatial attention 

mechanisms, and residual structure. The nonlinear 

transformation layer was a soft threshold function 

and extended convolution was introduced to build a 

dual path neural network. Then, important features 

in the signal could be selected without the use of any 

signal denoising algorithm. The outcomes indicated 

that this method can greatly promote the fault 

diagnosis accuracy [9]. The Gao team proposed an 

innovative optimized adaptive deep belief network 

(DBN) and used it to solve the issue of rolling BF 

identification. DBN was optimized using the 

intelligent optimization method salp swarm 

algorithm. Finally, simulations on the ground of 

experiment data evidenced this method’s effect [10]. 

Tao et al. proposed an unsupervised cross-domain 

fault diagnosis method. The wavelet packet 

decomposed and reconstructed the bearing’s 

vibration signal, as well as the energy feature vector 

to obtain a two-dimensional time-frequency map of 

the fault features. The model was used to motor 

bearings for comparative verification. The outcomes 

indicated that this method had high diagnostic 

accuracy and strong robustness [11]. Cui et al. first 
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proposed unsupervised learning to understand data 

attributes, followed by sensitivity analysis to extract 

significant features and avoid overfitting. In this 

process, segmented attributes were learned to 

improve supervised learning. A three-stage learning 

algorithm was raised to extract and study the most 

significant information for turbine BFD. The raised 

framework was proved by using real data from 

various datasets of bearing non-stationary vibration 

signals [12]. 

In summary, many manners have been used in 

BFD. Although these methods have achieved certain 

improvement results in experiments, there is still 

room for improvement in their methods, such as 

algorithm complexity, computational speed, 

recognition accuracy, and other issues. Recently, the 

GWO algorithm has also been gradually mentioned 

in the fault diagnosis neighborhood, which has a 

simple structure, fast computation speed, and strong 

stability. Therefore, based on the GWO algorithm, 

ICEEMDAN and PE are introduced to improve the 

algorithm, with the aim of further improving model 

performance and reducing the influence of noise on 

the model. 

 

3. CONSTRUCTION OF A BFD MODEL 

BASED ON IMPROVED GWO 

ALGORITHM 

 

BFD plays a crucial role in the operation and 

maintenance of large equipment and machinery, 

which can avoid sudden faults and damage to the 

equipment. BFD has high complexity, and the 

occurrence of faults is characterized by diversity and 

strong nonlinearity. The fault signal is easily affected 

by noise, which increases the difficulty of BFs. To 

solve the problem of BFD, an improved GWO 

algorithm-based diagnostic model is proposed. The 

model classifies BFs using SVM and identifies faults 

using the improved GWO algorithm. 

 

3.1. Bearing fault classification model based on 

SVM 

SVM is a widely used supervised learning model 

for data classification and regression analysis, which 

has good generalization performance and is suitable 

for dealing with high-dimensional and nonlinear 

complex problems [13-14]. The principle of SVM is 

to find a hyperplane to separate data points of 

different categories, as shown in Fig. 1. 

In Fig. 1, "circle" and "triangle" represent 

different data points, where 𝛽 represents the 

classification line, and the distance between 𝛽1 and 

𝛽2 represents the classification interval. The 

classification line is described by Eq. (1). 

𝜔𝑥 + 𝑏 = 0 (1) 

In Eq. (1), 𝜔 represents the coefficient of the 

formula classification line, and 𝑏 denotes a 

constant that means the translation position of 

the classification line. The size of the 

classification interval in the figure is 2/‖𝜔‖. 

When the value of ‖𝜔‖ is the smallest, the 

classification interval is the largest. At this point, 

SVM transforms the classification problem into 

a minimum value problem, and during the 

classification of SVM, the optimal solution is 

obtained for the parameters. The study 

introduces Lagrange multipliers in SVM to 

address the optimization of SVM parameters, 

and the formula is shown in Eq. (2). 

𝐿(𝜔, 𝑏, 𝛼) =
1

2
‖𝜔‖2

−∑𝛼𝑖[𝑦𝑖[(𝜔 ⋅ 𝑥𝑖)

𝑛

𝑖=1

+ 𝑏] − 1] 

(2) 

 

 

 

 

Fig. 1. Principle of SVM classification 

 

In Eq. (2), 𝛼𝑖 represents the Lagrange multiplier. 

𝐿 represents taking the derivative of parameters 𝜔, 𝑏 

and 𝛼, making the derivative value 0, then there is 

Eq. (3). 

𝑚𝑎𝑥 𝐿 (𝜔, 𝑏, 𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ⋅ 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 

(3) 

Assuming the optimal solution in Eq. (3) is 𝛼𝑖
∗, 

then there is 𝜔∗ = ∑ 𝛼𝑖
∗𝑦𝑖𝑥𝑖

𝑛
𝑖=1 , and the 

corresponding coefficient 𝑏∗ can be calculated. The 

optimal classification function is shown in Eq. (4). 
𝑦 = 𝑠𝑔𝑛( 𝑓(𝑥)) = 𝑠𝑔𝑛( (𝜔∗ ⋅ 𝑥) + 𝑏∗)

= 𝑠𝑔𝑛(∑𝛼𝑖
∗𝑦𝑖(𝑥𝑖 ⋅ 𝑥) + 𝑏

∗

𝑛

𝑖=1

) 
(4) 

The type of most unknown samples can be 

determined through Eq. (4), but there are still a small 

number of samples during classification. Therefore, 

research also needs to introduce fault-tolerant 

variables, denoted as 𝛿𝑖, whose main function is to 

allow for misclassification of samples. The 

classification expression after introducing fault-

tolerant variables is shown in Eq. (5). 
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{
𝑚𝑖𝑛

1

2
‖𝜔‖2 + 𝑐∑𝛿𝑖

𝑛

𝑖=1

𝑦𝑖[(𝜔 ⋅ 𝑥𝑖) + 𝑏] − 1 + 𝛿𝑖

 (5) 

In Eq. (5), 𝑐 represents the penalty factor. In real 

life, many high-dimensional samples have linear and 

indivisible attributes, making it difficult to directly 

use SVM for classification. At this point, SVM needs 

to introduce KFs to solve such problems. The status 

data is mapped to a high-dimensional space, and the 

corresponding segmentation is performed in the 

high-dimensional space. The expression is expressed 

in Eq. (6) [15]. 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝛷(𝑥𝑖) ⋅ 𝛷(𝑥𝑗) (6) 

In Eq. (6), 𝛷(𝑥𝑖) means a nonlinear mapping 

function, which is used to replace Eq. (3) and solve 

the meta feature space to obtain Eq. (7). 

{
 
 

 
 𝑚𝑎𝑥 𝐿 (𝜔, 𝑏, 𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝛷(𝑥𝑖) ⋅ 𝛷(𝑥𝑗))

𝑛

𝑗=1

𝑛

𝑖=1

𝑦 = 𝑠𝑔𝑛( (𝜔∗ ⋅ 𝛷(𝑥)) + 𝑏∗ = 𝑠𝑔𝑛(∑𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 ⋅ 𝑥) + 𝑏

∗)

𝑛

𝑖=1

 (7) 

From Eq. (7), this method of calculation has no 

relationship with the data dimension and can classify 

low-dimensional data as well as solve high-

dimensional data. The SVM algorithm constructed 

above can be used in bearing fault classification, 

which can effectively process complex feature data 

and accurately classify bearing states by constructing 

optimal interface. 

 

3.2. Bearing fault identification based on GWO 

algorithm 

The main reason for implementing the nonlinear 

mapping function of formula (7) is that SVM 

introduces KFs, and different KFs have different 

effects. Common KFs include linear KFs, Gaussian 

radial basis functions, Sigmoid KFs, and polynomial 

KFs. Among them, linear KF has fewer parameters 

and runs faster, but its accuracy in classification 

solution is poor; The Sigmoid KF is equivalent to a 

multi-layer neural network in the SVM structure, and 

its running speed is relatively slow. Polynomial KFs 

have a large number of parameter codes, high 

computational complexity, and poor learning ability 

[16]. Therefore, the radial KF was selected for the 

study, which has strong local characteristics and has 

good performance in dealing with nonlinear 

problems. After studying the classification model for 

BFD, it now analyzes the BF identification model. In 

BF identification, the GWO algorithm is mainly used 

in research [17]. The prototype of this algorithm 

comes from the social behavior and hunting strategy 

of gray wolves, which are social animals and their 

hunting behavior includes searching, approaching, 

and chasing prey. In the algorithm, the gray wolf 

simulates these behaviors to find the optimal 

solution in the solution space. There is a clear social 

hierarchical structure in the gray wolf population, as 

shown in Fig. 2. 

 

Fig. 2. Social hierarchy structure of wolf 

packs 

 

Fig. 2 shows the social hierarchy structure of 

wolf packs, including head wolf, subordinate wolf, 

executive wolf, and wolf pack, denoted as 𝜁, 𝜓, 𝜉, 

and 𝜐, respectively. The head wolf is the leader of 

the pack and has the highest decision-making power. 

The subordinate wolf is the deputy leader of the wolf 

pack, and coercing the head wolf to make decisions 

is its duty. Executive wolf is the complete execution 

of leader commands to maintain the normal 

operation of the wolf pack. The wolf pack is 

responsible for performing search tasks. In the 

preparation stage of wolf pack hunting, there is no 

clear prey information when the wolf pack enters the 

hunting ground, and they can only track their prey by 

constantly searching for scent. Therefore, during the 

hunting process, wolf packs of four levels of status 

need to adjust their positions and constantly 

approach their prey. In the hunting, the step 1 is to 

approach the prey, the step 2 is to surround the prey, 

and the step 3 is to attack the prey. The research 

conducted data modeling through the above steps. 

Assuming that the iteration times of the model is 𝑡, 
the position vector of the prey and the wolf pack are 

denoted as 𝑋𝑝 and 𝑋, respectively. The linear 

distance between the prey and the wolf pack can be 

represented by Eq. (8) [18]. 

𝐷 = |𝐶𝑋𝑝(𝑡) − 𝑋(𝑡)| (8) 

In Eq. (8), 𝐶 represents the coefficient vector. 

After obtaining the distance between the prey and the 

wolf pack through Eq. (8), the wolf pack adjusts its 

position as shown in Eq. (9). 

{
 
 

 
 
𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴𝐷

𝐴 = 2𝑎𝑟1 − 𝑎
𝐶 = 2𝑟2

𝑎 = 2 − 2(
𝑡

𝑡𝑚𝑎𝑥
)

 (9) 

In Eq. (9), 𝐴 represents the coefficient vector. 𝑟1 

and 𝑟2 represent random vectors, with values ranging 

from [0, 1], and 𝑎 represents the convergence factor, 

which is inversely proportional to the iteration times. 

After the head wolf roughly determines the location 

of the prey, it will lead the subordinate wolf to hunt 

around the prey. During the hunting, it uses the wolf 

pack and the prey’s location to accurately locate the 

prey and ultimately complete the attack. The position 

changes of prey captured by wolf packs can be 

represented by Eq. (10) [19]. 
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{
 
 
 

 
 
 
𝐷𝜁 = |𝐶1𝑋𝜁(𝑡) − 𝑋(𝑡)|

𝐷𝜓 = |𝐶2𝑋𝜓(𝑡) − 𝑋(𝑡)|

𝐷𝜉 = |𝐶3𝑋𝜉(𝑡) − 𝑋(𝑡)|

𝑋1 = 𝑋𝜁 − 𝐴1𝐷𝜁
𝑋2 = 𝑋𝜓 − 𝐴2𝐷𝜓
𝑋3 = 𝑋𝜉 − 𝐴3𝐷𝜉

 (10) 

In Eq. (10), when the vector coefficient |𝐴| is 

greater than 1, the wolf pack will increase the area of 

the hunting area and search for prey in a larger range. 

In the algorithm, global search is performed to 

increase convergence speed. When |𝐴| is less than 1, 

the wolf pack reduces the area of the hunting area 

and determines the position of the prey. In the 

algorithm, local search is performed to slow down 

the convergence speed. The GWO algorithm is most 

likely to fall into local optima when the wolf pack 

changes its attack direction. Because when changing 

the attack direction, the prey's position will 

constantly change, leading to the loss of prey [20]. 

When a wolf pack seizes its prey, its position update 

diagram is shown in Fig. 3. 

 

Fig. 3. Schematic diagram of wolf pack 

encirclement location 

 
3.3. Construction of improved GWO algorithm 

The above GWO algorithm is mainly used in 

BFD to find the optimal parameters or features to 

achieve the best fault recognition effect. However, 

GWO also has some limitations, such as parameter 

selection issues and local optimal traps. To 

overcome the above limitations, a method, 

ICEEMDAN, is introduced. The principle of this 

method is to add adaptive white noise during the 

decomposition process, and the reconstructed signal 

after decomposition is almost the same as the 

original signal. This method improves the residual 

noise problem of the Intrinsic Mode Function (IMF) 

component to some extent. ICEEMDAN adds paired 

positive and negative Gaussian white noise to the 

initial signal before decomposing it, as shown in Eq. 

(11). 

𝑥(𝑖) = 𝑥 + 𝑜𝑘𝑣
(𝑖) (11) 

In Eq. (11), 𝑜𝑘 represents the standard deviation 

of noise, and 𝑣(𝑖) represents paired positive and 

negative Gaussian white noise. The residual value 

between the first modal component and the modal 

component of ICEEMDAN is shown in Eq. (12). 

{
𝐼𝑀𝐹1 =

1

𝑁
∑𝐸1[𝑥

(𝑗)]

1

𝑗=1

𝑅1 = 𝑥 − 𝐼𝑀𝐹1

 (12) 

In Eq. (12), 𝐸 represents the IMF obtained 

through decomposition. Positive and negative 

Gaussian white noise are added to the residual in Eq. 

(12) to obtain a new signal. By performing the same 

processing on the new signal, the second modal 

component and the residual of the modal component 

can be obtained. This repetition can effectively solve 

the problem of modal overlap during decomposition, 

but residual noise will still be retained. Therefore, 

the study combines PE with ICEEMDAN, which is 

an information entropy with advantages such as 

simple calculation and strong noise resistance. PE 

can accurately describe complex time series 

mutations and has strong sensitivity to dynamic data. 

Its expression is shown in Eq. (13). 

{

𝑋1 = {𝑥(1), 𝑥(1 + 𝑇), . . . , 𝑥(1 + (𝑚 − 1)𝑇)}

𝑋2 = {𝑥(2), 𝑥(2 + 𝑇), . . . , 𝑥(2 + (𝑚 − 1)𝑇)}
. . .

𝑋𝑘 = {𝑥(𝑘), 𝑥(𝑘 + 𝑇), . . . , 𝑥(𝑘 + (𝑚 − 1)𝑇)}

 (13) 

In Eq. (13), 𝑚 refers to the embedding 

dimension, and 𝑇 means the delay time. There are 𝑚! 
ways to arrange the reconstructed components in 

ascending order. At this point, the probability 

distribution of the position sequence is calculated as 

shown in Eq. (14). 

∑𝑃𝑗

𝑛

𝑗=1

= 1 (14) 

In Eq. (14), 𝑃 represents the probability of the 

position sequence. Therefore, the PE of time series 

is defined as Eq. (15). 

𝑃𝐸(𝑦) = −∑𝑃(𝜋𝑗1𝑗2...𝑗𝑚) 𝑙𝑛 𝑃 (𝜋𝑗1𝑗2...𝑗𝑚)

𝑚!

𝑇−1

 (15) 

In Eq. (15), 𝜋 represents the arrangement pattern 

of the reconstructed vector. When 𝑃(𝜋𝑗1𝑗2...𝑗𝑚) =

1/𝑚! is satisfied, the maximum value 𝑙𝑛(𝑚!) will 

be obtained. Based on the analysis of the overview, 

the process of using the improved model in BFD is 

shown in Fig. 4. 

 

Fig. 4. Flow chart of BFD for ICEEMDAN-

PE 
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4. PERFORMANCE ANALYSIS OF A BFD 

MODEL BASED ON IMPROVED GWO 

ALGORITHM 

 

To evidence the proposed method’s feasibility, 

the performance of the model was analyzed through 

simulation and comparative experiments. The 

experiment used bearing data from a certain 

university for simulation analysis. The research used 

benchmark testing functions and BF examples to 

verify the research method’s effectiveness, and used 

fitness values, fault decomposition values, 

recognition accuracy, etc. as algorithm performance 

evaluation indicators. 

 

4.1. Performance testing of improved GWO 

algorithm 

The experimental data adopted the fault data of 

the drive end, and deep groove ball bearing 6406 was 

applied as the analysis object. The data set includes 

normal bearing, inner ring failure, outer ring failure 

and rolling element failure. Among them, normal 

bearings have no signs of failure and can be used as 

control group to identify fault characteristics. The 

inner ring failure is simulated by creating a groove 

of a specific size in the inner ring, for example 1mm 

width and 0.5mm depth; The outer ring fault is to 

design a groove of the same size in the outer ring to 

imitate the situation of the outer ring peeling; The 

fault of rolling element is to design grooves on the 

rolling element to simulate the damage of the rolling 

element. The motor speed was set at 1800 r/min, the 

sampling frequency was set at 12 Hz, and the load 

was set at 0HP. The three-dimensional structure of 

the model was established through Solid Works in 

the experiment, and simulation analysis was 

conducted through COMSOL. A rectangular groove 

with a width of 1mm and a depth of 0.5mm was built 

to simulate the peeling fault of the rolling bearing. 

The outer ring fault model and the rotor system 

model of the rolling bearing test bench constructed 

are denoted in Fig. 5. 

fault

(a) Types of rolling bearing 

outer ring faults

(b) Model of rotor system for rolling bearing test bench 

Fig. 5. Three-dimensional structure of rolling 

bearings 

 

To validate the performance of the improved 

GWO algorithm, two benchmark test functions were 

used for experiments. Simultaneously it selected 

genetic algorithm (GA), particle swarm optimization 

(PSO), GWO algorithm, and the ICEEMDAN-PE 

algorithm proposed in the study for comparative 

experiments. The benchmark functions selected for 

the study were unimodal testing function and 

multimodal testing function, as shown in Fig. 6. 

 

 

Fig. 6. Reference test function hole 

 

Fig. 6(a) represents the Sphere function, which is 

a classic benchmark function commonly utilized to 

assess the effectiveness of intelligent algorithms. 

Fig. 6(b) represents the Rastigin function, which has 

multiple local optima and poses certain difficulties 

in finding a global optimal solution. This test 

function aims to prove whether the algorithm can 

jump out of the local optimal solution. According to 

the benchmark test function mentioned above, the 

mean fitness and standard deviation fitness values of 

the comparison algorithm are denoted in Table 1. 

From Table 1, the average fitness value of the 

ICEEMDAN-PE algorithm in the Rastigin function 

was 0, indicating that the method found the global 

optimal solution in the function. In the Sphere 

function, although the ICEEMDAN-PE algorithm 

did not have a global optimal solution, its 

optimization performance was significantly 

improved compared to other algorithms. In terms of 

standard deviation fitness, the ICEEMDAN-PE 

algorithm still had a Rastigin function of 0, 

indicating that the method found the global optimal 

solution in the function and had the highest stability. 

In the Sphere function, the ICEEMDAN-PE 

algorithm had better stability compared to other 

algorithms. The results indicated that the 

optimization ability and stability of the improved 

algorithm model have been effectively raised. 
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Table 1. Comparison of algorithm mean fitness and 

standard deviation fitness values results 

Average fitness 

Name GA PSO GWO 
ICEEMD

AN-PE 

Sphere 

function 

2.06E-

05 

7.30E-

09 

9.56E-

28 
1.98E-41 

Rastigin 

function 
3.85 6.68 

1.83E-

12 
0 

Standard deviation fitness 

Name GA PSO GWO 
ICEEMD

AN-PE 

Sphere 

function 

4.99E-

05 

1.19E-

08 

1.41E-

27 
3.71E-41 

Rastigin 

function 
2.41 4.13 

1.12E-

11 
0 

 

4.2. Example analysis of BFD 

The study divided the BF states in the dataset into 

four types: normal bearing, rolling element fault, 

inner and outer ring fault. 50 sets of samples were 

chosen for each fault state, with 2048 sampling data 

points per set. The time-domain waveform of the 

bearing state is expressed in Fig. 7. 

 

 

 

 

Fig. 7. Time domain waveform of bearing state 

 

At the same time, the CEEMDAN model and 

ICEEMDAN-PE model were used to compare the 

decomposition results. The model noise’s standard 

deviation was set to 0.2, the average amount of 

experiments was 100, and the max amount of 

iterations was 1000. The decomposition results of 

the two models for rolling element faults are shown 

in Fig. 8. 

 

 

Fig. 8. Decomposition diagram of rolling 

element faults using different algorithms 

 

Fig. 8(a) shows the rolling element fault 

decomposition diagram of the CEEMDAN model, 

where the original signal was decomposed into 10 

IMF and one residual component. Fig. 8(b) shows 

the rolling fault decomposition diagram of the 

ICEEMDAN-PE model, where the original signal 

was decomposed into 9 IMF and one residual 

component. Comparing the two figures, the 

ICEEMDAN-PE model was more complete and 

simple, mainly reducing the modal aliasing 

phenomenon that occurred during the signal 

decomposition process. The results show that the 

ICCEMDAN-PE algorithm has significant 

performance advantages in solving optimization 

problems, can locate the global optimal solution 

reliably, and shows high consistency and accuracy in 

the repeated running of the algorithm. The study 

represented four types of BF states using labels 1-4 

and classified BFs using the model. The results are 

shown in Fig. 9. 



DIAGNOSTYKA, Vol. 25, No. 3 (2024) 
Jiang L.: Construction and application of a bearing fault diagnosis model based on improved GWO algorithm.  

 

8 

 
Fig. 9. Classification results of bearing faults 

 
In Fig. 9, GA-SVM, PSO-SVM, GWO-SVM, 

and IGWO-SVM models were used for comparative 

experiments. Fig. 9 shows the results of GA-SVM. 

The optimal parameter of the model was 38.7736, 

the optimal parameter was 0.240324, and the overall 

fault classification accuracy was 55.27%. Fig. 9 

shows the PSO-SVM results, with of 100 and of 

0.716302. The overall fault classification accuracy 

was 89.99%; Fig. 9 shows the GWO-SVM results, 

with a of 24.139 and a of 0.452834. The overall fault 

classification accuracy was 92.78%. Fig. 9 shows the 

IGWO-SVM results, with being 97.5163 and being 

0.136261. The overall fault classification accuracy 

was 94.55%. The bearing fault classification results 

in Fig. 9 show that the IGWO-SVM model 

integrated with ICCEMDAN shows the best fault 

classification accuracy, because the signals 

processed by ICCEMDAN can better highlight fault 

related features, and the GWO algorithm improves 

the accuracy of SVM parameter selection. The study 

selected bearing vibration signals in four different 

states to analyze the PE results after model 

decomposition, with a time delay of 2 and an 

embedding dimension of 3. The specific results are 

shown in Fig. 10. 

In Fig. 10, the PE values of the four states 

exhibited a certain pattern. Under the same sample 

size, the PE values of the four states all increased 

with the increase of IMF number, with the most 

obvious state being the normal state of the bearing; 

Under the same number of IMF, the PE values of the 

four states have no relationship with the sample size, 

and their values are relatively stable. The results 

show that under the same sample size, the PE value 

of bearings in normal state is relatively stable, while 

the PE value of bearings in fault state increases with 

the increase of the number of IMF, especially the 

change of normal state is the most obvious. For 

different IMF quantities, PE values in the four states 

are relatively stable, which means that PE values can 

be used as a robust feature for classification. To 

understand the eigenvector values of specific PE, the 

PE eigenvectors of bearing vibration signals are 

described in Table 2 in the experiment. 

 
Table 2. PE eigenvector values of different bearing 

vibration signals 

Bearing status 
PE eigenvector 

IMF-1 IMF-2 IMF-3 IMF-4 

Normal 0.5140  0.3678 0.2113 0.2215 

Rolling element fault 0.4161 0.8624 0.6332 0.6443 

Inner ring failure 0.5342 0.3985 0.2179 0.1927 

Outer ring fault 0.4042 0.8659 0.6738 0.6779 

Bearing status 
PE eigenvector 

IMF-5 IMF-6 IMF-7 IMF-8 

Normal 0.1349 0.1985 0.3157 0.4346 

Rolling element fault 0.5648 0.5617 0.6019 0.5969 

Inner ring failure 0.1380  0.2208 0.3313 0.4377 

Outer ring fault 0.5928 0.5957 0.6103 0.5807 

 

In Table 2, the study selected the first 8-order 

IMF as the fault characteristic components of the 

vibration signals in each state. From data analysis, 

the vibration signal of bearings in normal state was 

more stable, and its PE eigenvector value was in the 

range of [0.13, 0.52]. The PE eigenvector values of 

rolling graph faults were within the range of [0.41, 

0.87]. The PE eigenvector values of faults within the 

circle were within the range of [0.13, 0.54]. The PE 

eigenvector values of out of circle faults were within 

the range of [0.40, 0.87]. The results indicated that 

the fluctuation of the PE eigenvectors of the three 

0
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Fig. 10. PE results of various components of bearing vibration signal 



DIAGNOSTYKA, Vol. 25, No. 3 (2024) 

Jiang L.: Construction and application of a bearing fault diagnosis model based on improved GWO algorithm.  

 

9 

fault states increased, indicating good 

discrimination. 

 

5. CONCLUSION 

 

As one of the important components of 

mechanical equipment, the failure of bearings can 

have a serious impact on equipment, work, and life. 

Therefore, research was conducted on the 

identification and classification of BF states. A 

GWO-SVM model combining ICEEMDAN-PE was 

proposed in this study. The model utilized 

ICEEMDAN-PE to analyze BF signals and obtain 

vibration signals under different fault states, which 

are used to optimize the differentiation of BF states. 

Research applied improved GWO algorithm to 

optimize SVM, adjust the parameter settings of 

SVM, and achieve more accurate classification of 

BF types. The performance analysis of the model 

was conducted through simulation and comparative 

experiments. The research outcomes denoted that the 

mean fitness and standard deviation fitness values of 

the ICEEMDAN-PE algorithm in the Sphere 

function and Rastigin function were both 0. The 

IGWO-SVM model had an overall fault 

classification accuracy of 94.55%. The PE 

eigenvector of bearing vibration signals had obvious 

discrimination. The experimental results verified the 

superiority of this model in BF identification and its 

excellent effectiveness in processing nonlinear and 

non-stationary signals, providing a powerful tool for 

future machine health monitoring and fault 

diagnosis. However, there are still shortcomings in 

the research, as the test data in the study was mainly 

based on specific BF types and datasets. If it is 

applied to more complex or different types of faults, 

the effectiveness of this method may vary. Future 

research needs to test more types of faults and actual 

scenarios to improve the universality and robustness 
of the model. 
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