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Abstract 

The detection of belt deviation and longitudinal tearing defects is the key to ensuring the safe and reliable 

operation of the equipment. A three-dimensional belt deviation and longitudinal tear defect detection system 

based on binocular line laser technology was proposed to address the low detection efficiency and high delay 

of conveyor belt deviation and longitudinal tear detection. A line laser was irradiated onto the surface of the 

belt through an image acquisition device, and the collected images were preprocessed. Image segmentation, 

feature extraction, and pattern recognition techniques were used to detect belt deviation and longitudinal tearing 

defects. These results confirmed that the system designed in this study only took an average of 20 to 30 

milliseconds to process an image. The average accuracy of secondary detection was 97.37%, which was 7.5% 

higher than that of primary detection. The average processing time of the first level detection was 19.45ms. The 

average processing time of the two level detection was 23.73ms, which was 4.28ms longer than the first level 

detection. The designed 3D belt deviation and longitudinal tearing defect detection system based on binocular 

laser technology has high real-time and accuracy, which is very important for the safety production of 

enterprises. 
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1. INTRODUCTION 

  
Belt is the main equipment for underground 

transportation in coal mines and a major tool for 
underground coal transportation. Due to long-term 
exposure of the belt during use, it is susceptible to 
various factors such as dust, coal powder, etc. If not 
cleaned in a timely manner, they can lead to severe 
belt wear, and in severe cases, they can cause belt 
breakage and cause safety accidents [1-2]. In 
addition, due to wear and tear after long-term use, 
the belt is prone to deviation. Belt deviation can 
cause unstable coal flow, leading to belt breakage 
accidents. At present, manual testing is mainly used, 
which is not only inefficient and labor-intensive, but 
also poses safety hazards. Therefore, automatic 
detection has become a development trend in 
detecting belt deviation and longitudinal tearing 
defects [3]. Because the belt is an irregular object, it 
is easily affected by noise after collecting images, 
resulting in poor image quality and inability to obtain 
accurate results. In response to these issues, scholars 
have proposed various methods for image 
preprocessing, based on filtering, threshold 
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segmentation, and other methods to eliminate the 
impact of noise. They use methods such as edge 
detection and corner detection to extract surface 
features of belts, and use machine learning to 
classify images [4-5]. However, none of these 
methods can achieve good results. This study 
focuses on the belt conveyor and uses a combination 
of binocular laser technology and three-dimensional 
point cloud data to diagnose and analyze the tearing 
fault of the conveyor belt. A binocular camera with 
built-in line laser is used to irradiate the laser onto 
the belt surface for shooting and transmission to a 
computer for processing and analysis, thereby 
achieving automatic detection of belt deviation and 
longitudinal tearing defects. 

The article conducts research through four parts. 

Firstly, the current research status of binocular laser 

technology and detection of belt deviation and 

longitudinal tearing defects is discussed. Secondly, 

it is the design of a belt deviation and longitudinal 

tearing monitoring system based on a binocular 

camera with built-in line laser. Next, performance 
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verification is conducted on the designed system. 

Finally, there is the conclusion. 

 

2. RELATED WORKS 

 

In recent years, visual inspection has become a 

non-contact non-destructive testing technology. It 

has developed rapidly and has been widely applied 

in various fields, and is becoming increasingly 

mature. To improve the measurement accuracy of 

rotating object's shape, Ye et al. developed a laser 

vision measurement system consisting of two 

cameras and a rotation system by converting the 

rotation axis parameters of binocular vision to 

reconstruct the three-dimensional shape of this 

object. After verification, the system could 

reconstruct the three-dimensional shape of an object 

at any position based on the rotation axis parameters 

[6]. Wu et al. proposed a dual camera measurement 

method using line structured light to address the 

missing point cloud data caused by field of view 

occlusion in 3D measurement. They improved the 

accuracy of three-dimensional measurement by 

using binocular polar constraints to calibrate the 

physical parameters of the light plane. After 

verification, this method could effectively reduce the 

loss of measurement information during the 

measurement process [7]. Wu et al. proposed a two-

stage defect recognition method using structured 

light images. They first extracted optical stripes from 

hue, saturation, range of values, and grayscale space, 

and used hole filling methods to ensure the integrity 

of the stripes. Then they calculated the depth 

information of all the light strips and ultimately 

formed a depth map for defect localization and 

measurement. The results verified the feasibility and 

accuracy of this method [8]. Wang et al. developed a 

dynamic binocular stereo vision system suitable for 

a large field of view. By using an improved two-

point method, the initial value of camera was quickly 

estimated, and the pitch and yaw angles of the 

camera were accurately estimated using the output of 

the biaxial high-precision platform, achieving online 

measurement of the rotated three-dimensional 

spatial coordinates [9]. Li et al. proposed a three-

dimensional measurement method for indoor wave 

fields in the spatiotemporal domain based on a 

combination of binocular stereo vision and digital 

image processing to address the shortcomings of 

current indoor wave field measurement methods. 

They used suspended particles to characterize the 

water air interface layer, densely reconstructed the 

spatiotemporal domain of indoor waves, and sliced 

it in space. In the end, they obtained the three-

dimensional distribution of wave spatiotemporal 

domains in different directions, thereby achieving 

efficient and accurate measurement of indoor wave 

spatiotemporal domains [10]. 

At present, longitudinal tear detection of 

conveyor belts has been a key research topic in 

China. There are various detection methods for 

longitudinal tearing of conveyor belts, and the 

detection device has also developed from singularity 

to intelligence. Wang et al. proposed a sound-based 

detecting method to solve the low real-time, low 

reliability, and so on. They first preprocessed the 

sound signal, and then extracted the signal features. 

Finally, they established a neural network for 

classifying and recognizing longitudinal tearing 

sound signals of belt conveyors based on their 

acoustic signal characteristics [11]. Yang et al. 

proposed a method for early warning of longitudinal 

tearing of conveyor belts based on infrared 

spectroscopy analysis. They monitored the changes 

in the infrared radiation field and used the frequency 

domain characteristic coefficient T to determine 

whether there was a risk of longitudinal tearing. 

These results confirmed that this coefficient could 

identify longitudinal tearing of conveyor belts and 

provide early warning [12]. Zhang et al. proposed a 

new deep learning-based conveyor belt offset 

monitoring method to quickly and timely detect the 

deviation status. They improved the data of 

YOLOv5, improved their recognition ability for 

straight lines rather than borders, and achieved belt 

offset monitoring. These experiments confirmed that 

this method achieved a good compromise between 

accuracy and speed, with an accuracy of 90% [13]. 

Liu et al. proposed a deviation detection method for 

belt conveyors based on detection robots and deep 

learning to address the issue of conveyor belts being 

prone to deviation. They captured images by the 

detection robot and used the Hough transform 

algorithm to detect the edges of the conveyor belt. 

Finally, they corrected the detected edge point 

coordinates and estimated the deviation using the 

corrected coordinates. These experiments confirmed 

that this method had high detection accuracy and 

robustness [14]. Sun et al. established an evaluation 

system for the deviation status of curved conveyor 

belts that could detect, predict, correct, and warn 

based on the ARIMA-LSTM joint prediction model. 

They first constructed a conveyor belt deviation test 

system, and then established a mechanical model for 

curved conveyor belt deviation and solved it. 

Finally, they established an ARIMA-LSTM joint 

prediction model by using the series parallel 

weighing method. These experiments confirmed that 

the evaluation system had high feasibility [15]. 

In summary, researchers have proposed many 

methods to detect or avoid the occurrence of belt 

deviation and longitudinal tearing defects, and have 

also achieved certain results. However, due to the 

randomness of the occurrence of deviation tearing, 

further research is needed for fault detection and 

identification of longitudinal tearing of conveyor 

belts. Therefore, a reliable and real-time conveyor 
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belt longitudinal tear detection system is developed 

through image processing algorithms and binocular 

laser technology. 

 

3. DESIGN OF A BELT DEVIATION AND 

LONGITUDINAL TEAR MONITORING 

SYSTEM BASED ON A BINOCULAR 

CAMERA WITH BUILT-IN LINE LASER 

 

The overall architecture of the detection system 

is elaborated based on image processing algorithms 

and binocular line laser technology. Then, the 

overall structure is designed according to the actual 

detection requirements, and the collected point cloud 

data are preprocessed to obtain denoised and 

simplified point cloud data. On this basis, clustering, 

threshold segmentation and other algorithms are 

used to extract the deviation tearing features of the 

collected point cloud. 

 

3.1. Overall design of the belt deviation and 

longitudinal tearing monitoring system 

The application of belt conveyors in coal mines 

is becoming increasingly widespread, and the safety 

warning and protection of belts are particularly 

important. Belt deviation and longitudinal tearing 

are common faults that occur during the operation of 

belt conveyors, which can cause them to malfunction 

and seriously affect normal production efficiency 

and progress [16]. Moreover, they can also cause 

damage to the main parts of the equipment, leading 

to material scattering on the belt, causing abnormal 

wear and tear between the belt and the rollers, 

thereby reducing the service life of belt [17]. The belt 

deviation and longitudinal tearing monitoring 

system designed this time consists of two parts, 

namely, acquisition module and the back-end 

processor. The data acquisition is mainly responsible 

for collecting image data of the conveyor belt, 

including: binocular camera with built-in line laser, 

internal acquisition sensor, light source, lamp, PC, 

display, controller, and device. The back-end 

processor includes a data processing module, upper 

computer monitoring system, and cloud server 

system, and reserves a remote expert system and a 

mobile application access interface. 

 
Fig. 1. Installation diagram of binocular 

camera with built-in line laser 

 

The working environment of conveyor belt 

belongs to a dusty and humid environment. 

Therefore, during data acquisition, the camera lens is 

easily covered by dust and is also susceptible to 

interference from factors such as water mist. These 

make it impossible to obtain normally or the image 

quality obtained is very poor. If not handled 

properly, they can cause problems such as missing 

point cloud data and excessive noise [18]. So the 

study identifies that the conveyor belts' transfer 

points, machine heads, and other parts are prone to 

longitudinal tearing. And a binocular camera with 

built-in line laser is installed below them marking 

position and tilted 45 degrees to the bottom of the 

conveyor belt. Figure 1 shows the installation 

method. The research adds a stabilizing base at the 

bottom and stabilizes it with the ground through 

expansion screws, so that the whole mounting frame 

and the camera are not in contact with the belt 

conveyor, so as to avoid the vibration generated 

during the operation of the belt conveyor affecting 

the camera measurement data. Through the bottom 

endpoint's cloud data of conveyor belt, point cloud 

features are extracted and analyzed. And recognition 

of belt deviation and longitudinal tearing is achieved 

based on crack defect features and belt folding defect 

features. Finally, based on statistical multi frame 

continuous damage information, early warning 

recognition is achieved. 

 

Fig. 2. Crack detection plane expansion 

 
Figure 2 is a plan view of crack detection, where 

AD and BC represent the widths of two interfaces. 

The length of crack is equal to the distance from the 

starting boundary point to the ending boundary 

point, which is the product of the distance between 

columns ℎ and the number of point cloud columns 

𝑁. The coordinates of the starting and ending points 

of the crack detection area are recorded, providing a 

basis for future multi frame information fusion 

processing. The actual distance length in equation 

(1) must be calculated based on the current conveyor 

belt speed data. 

𝐷𝑖𝑠 = 𝑙𝑒𝑛 ×
𝑉𝑡

𝑛𝑢𝑚
 (1)

 

In equation (1), 𝐷𝑖𝑠 represents the actual distance 

length. 𝑙𝑒𝑛 represents the calculated length of point 

cloud data. 𝑉 represents the conveyor belt speed. 𝑡 

represents the time of a single frame of data. 𝑛𝑢𝑚 

represents the number of point cloud columns in a 

single frame of point cloud data. 

After calculating the degree of longitudinal 

tearing of the belt, it is also necessary to calculate the 

degree of belt deviation. This method performs edge 
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detection on point cloud data, and then extracts edge 

points based on this to obtain a set of edge points. 

Then, a sliding window is used to establish a point 

cloud per unit time and perform edge detection on 

the point cloud per unit time. Firstly, the search 

radius 𝑅 is set for any point 𝑂𝑖  in point cloud 𝑂, and 

the set 𝑁(𝑂𝑖) is used to represent the domain points 

in the search radius 𝑅, i.e. 𝑁(𝑂𝑖) = {𝑂𝑗|𝑂𝑗 ∈

𝑂, ‖𝑂𝑖 − 𝑂𝑗‖ ≤ 𝑅}. Then set the surface equation, 

and equation (2) is the specific representation 

method. 

{
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑   (𝑑 ≥ 0)

𝑎2 + 𝑏2 + 𝑐2 = 1  (2) 

In equation (3), the set 𝑁(𝑂𝑖) corresponding to 

𝑂𝑖  is taken and the distance 𝑑𝑖 from 𝑁(𝑂𝑖) to the 

surface is calculated. 

𝑑𝑖 = |𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑|
 (3) 

The eigenvector corresponding to the minimum 

solution of ∑ 𝑑𝑖
2𝑛

𝑗=1  is the normal vector 𝑛 of the 

change point. The points in the set 𝑁(𝑂𝑖) are 

projected onto the tangent plane Ω, represented by 

𝑁(𝑂𝑖
′). A point is taken in 𝑁(𝑂𝑖

′), with 
𝑂𝑖𝑂𝑗

′

|𝑂𝑖𝑂𝑗
′|

 as axis 

𝑢, 𝑛 as axis 𝑤, and 𝑢 × 𝑤 as axis 𝑣. The local 

coordinate system is constructed with 𝑂𝑖  as the 

coordinate center, represented by (𝑂𝑖 ,  𝑢,  𝑣,  𝑤). 

Then, the clockwise angle 𝜑 between the vector 

𝑂𝑛𝑂𝑖  from other point 𝑂𝑛 to point 𝑂𝑖  in set 𝑁(𝑂𝑖) 

and the coordinate axis 𝑢 was calculated, and the 

angle set 𝜑′ was obtained by subtracting the adjacent 

angles in pairs. Equation (4) represents the specific 

calculation. 

{

𝜑 = (𝜀1,  𝜀2,  𝜀3,  … 𝜀𝑛)

𝜑′ = (𝜀1
′,  𝜀2

′,  𝜀3
′,  … 𝜀𝑛

′)

𝜀𝑛−1
′ = 𝜀𝑛 − 𝜀𝑛−1

 (4) 

In equation (4), 𝜑′ is the angle between two 

vectors. The elements in the set 𝜑′ will be sorted in 

descending order to find the maximum angle 𝜀′𝑚𝑎𝑥  

between them. If 𝜀′𝑚𝑎𝑥  exceeds the critical value 

(usually π/2), it is considered an edge point. After 

extracting all the edge points, the edge points of the 

head and tail are removed, leaving only the set of 

edge points on both sides of the belt. The deviation 

angle is calculated by the angle between the initial 

belt edge and the camera center point, and the angle 

between the real-time belt edge point and the camera 

center point. Based on the calculated deviation 

angle, it is determined whether the set threshold has 

been exceeded. If so, it indicates that the belt has 

deviated, and then an alarm linkage processing is 

executed. If not, it indicates that the belt is normal. 

 

3.2. Optimization and 3D reconstruction of 3D 

point cloud data processing 

The designed system mainly consists of two 

parts: data analysis and multi frame information 

fusion. However, the original point cloud data has a 

large scale, high density, contains a large number of 

duplicate points, and is affected by various factors 

such as environment and hardware, resulting in a 

large amount of noise [19]. Therefore, it still needs 

to be optimized and processed. Figure 3 shows the 

data processing of this detection system. In terms of 

data analysis, the main focus is on processing the 

single frame laser point cloud data of the belt, to 

extract the running and tearing features of the single 

frame point cloud data of the belt, as well as the 

position, width, and depth information of the point 

cloud. 

Initiate

3D point cloud acquisition

Point cloud 

preprocessing

Belt deviation damage 

feature information 

extraction

Deviation or 

damage found

First appearance

Belt deviation damage 

feature information 

extraction

Record deviation or 

damage information

Deviation or 

damage end frame 

judgment

Abort program 

instruction received

The whole continuous 

multi-frame belt deviation 

damage characteristic 

information was analyzed

Release deviation 

damage 

information

Deviation and tearing 

alarm threshold 

determination

Audible and visual 

alarm

Finish

Y

N

Y

Y

N

Y

Y

N

N

N

 
Fig. 3. Data processing flow chart of the 

detection system 

 

 
Fig. 4. Schematic diagram of clustering 

process 

 

The point cloud data optimization strategy 

adopted is to first remove most noise points from the 

point cloud data, and then remove noise points that 

are closer to normal point clouds [20]. Firstly, 𝑘 −
𝑑 𝑡𝑟𝑒𝑒 is constructed to establish the topological 

relationship of the point cloud. Each data point in the 

point cloud is searched within the domain, with a 

neighborhood value of 𝑘. Then, the Euclidean 

distance between the point and the center of the 

neighborhood is calculated in 𝑘. The average 

distance of adjacent values of 𝑘 at each point is 

calculated, represented by 𝑢𝑑, and the standard 

deviation of adjacent points of each 𝑘 is calculated 

using equation (5). 

{

𝑢𝑑 =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1

𝜎 = √
1

𝑛
∑ (𝑑𝑖 − 𝑢𝑑)2𝑛

𝑖=1

  𝑖 = 1,  2,  3,  𝑛
 (5) 

On the basis of equation (5), noise is removed. 

The method adopted by the research institute is 

threshold segmentation, and the threshold is set to 𝜀. 



DIAGNOSTYKA, Vol. 25, No. 4 (2024)  

Zhang Z, Yang C, Huang C, Gao H, Bao Y: Detection of three-dimensional belt deviation and longitudinal… 

 

5 

When 𝑢𝑑 ≥ 𝜀, the filtering point is determined to be 

a noise point, and then denoised. On the contrary, if 

𝑢𝑑 is below the critical value, it indicates normal and 

should remain unchanged. Equation (6) represents 

the threshold. 

𝜀 = 𝑢𝑑 ± 𝜆𝜎
 (6) 

The study selects a stereo simplification 

algorithm based on average distance. The point 

cloud is placed inside a cube, and the compression of 

the point cloud is achieved by pre-selecting the 

center point of the cube and satisfying threshold 

filtering conditions based on this distance. The 

specific methods are to take 𝑃 = (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) as the 

center point, point cloud data as 𝑊, and then 

calculate the distance 𝑑 from 𝑃 point to any point in 

this cube, expressed as equation (7). 

{

𝑊 = 𝑊{(𝑋𝑖 + 𝑌𝑖 + 𝑍𝑖), 𝑖 = 1,2, … , 𝑛}

𝑑 = √(𝑃𝑥 − 𝑋𝑖)
2 + (𝑃𝑦 − 𝑌𝑖)(𝑃𝑧 − 𝑍𝑖)

2
 (7) 

The distance 𝑑 obtained above is added, and then 

the average value 𝐷 is calculated. If 𝑑 < 𝐷, the 

threshold condition is not met, and the point cloud 

data is deleted. Otherwise, the point cloud is retained 

in equation (8). 

𝐷 =
∑ 𝑑𝑛

𝑖−1

𝑛
 (8) 

Taking a point cloud on a line as an example, a 

preliminary screening is conducted first. Assuming 

that the quantity of point cloud data on each line is 

usually 𝑁0, the quantity of point cloud data on each 

line scanned in real-time is calculated in order, 

which is 𝑁1,  𝑁2,  𝑁3,  … 𝑁𝑛−1,  𝑁𝑛. The threshold is 

set to 𝑘, and the point cloud data on each subsequent 

line is subtracted from 𝑁0, which is Δ𝑁. However, 

due to negative numbers, it is not convenient to 

compare. So when solving, the absolute value of Δ𝑁 

must be taken in equation (9). 

|Δ𝑁| = 𝑁0 − 𝑁𝑛   (𝑛 = 1,  2,  3, … 𝑛)
 (9) 

Assuming that the y-axis point cloud coordinates 

obtained on a single laser line are 

𝑦1,  𝑦2 ,  𝑦3 ,  … 𝑦𝑛−1,  𝑦𝑛, the difference Δ𝑦 between 

the absolute values of adjacent coordinate points is 

calculated in equation (10). 

Δ𝑦 = 𝑦𝑖 − 𝑦𝑖−1   (𝑖 = 1,  2,  3, … 𝑛)
 (10) 

The threshold is set to 𝑇𝑎. When Δ𝑦 ≥ 𝑇𝑎, the 𝑖 -
th point 𝑦𝑖  and the (𝑖 − 1)-th point 𝑦𝑖−1 on the 𝑗 -th 

laser line are considered as a pair of defect points, 

and the (𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖) and (𝑥𝑖−1,  𝑦𝑖−1,  𝑧𝑖−1) of this 

defect point are saved in matrix 𝑁𝑗, represented by 

equation (11). 

𝑁𝑗 = [[𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖], [𝑥𝑖−1,  𝑦𝑖−1,  𝑧𝑖−1]]   (𝑖,  𝑗 =

1,  2,  3, … 𝑛)
 (11) 

In equation (11), 𝑁𝑗 represents a defect point 

detected on the laser line. The above operation is 

repeated, and all defect points on a laser line that 

meet the threshold were stored in matrix 𝑁𝑗 in 

equation (12). 
𝑁𝑗 =

[
[𝑥1, 𝑦1, 𝑧1], [𝑥2, 𝑦2, 𝑧2],  … , [𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1], 

[𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
]   (𝑖,  𝑗 =

1,  2,  3, … 𝑛)

 (12) 

To meet the real-time requirements of belt 

conveyor deviation and longitudinal tear detection, 

an image reconstruction method based on deviation 

and longitudinal tear features is adopted. After 

obtaining each frame of linear point cloud, it will be 

processed in real-time. Firstly, a larger container 𝑉 

is constructed to store the defect point cluster 𝑣, 

while 𝑣 is used to store adjacent points obtained 

during the detection. By setting the speed 𝑣 and the 

shooting time 𝑡1 returned by the camera, the x-

coordinates of all point clouds obtained on the 𝑖 -th 

laser line can be determined in equation (13). 

𝑥𝑖 = 𝑣𝑡𝑖
 (13) 

In binocular camera with built-in line laser 

detection, the time on the first laser line collected by 

the camera is taken as 𝑡1. The camera transmits real-

time information in the y and z directions of all 𝑛 

points on the 𝑖 -th laser line. Meanwhile, the x-

coordinate on this laser line displays 𝑥𝑖,1 = 𝑥𝑖,2 =

⋯ 𝑥𝑖,𝑗 = 𝑥𝑖,𝑛. The point on the 𝑖 -th laser beam is 

represented by 𝑃𝑖[1]~𝑃𝑖[𝑛]. In this way, the three-

dimensional coordinate (𝑥𝑖,𝑗 ,  𝑦𝑖,𝑗 ,  𝑧𝑖,𝑗) of any point 

𝑃𝑖[𝑗] on the 𝑖 -th laser line can be obtained. 

For the y coordinate of 𝑃𝑖[2]~𝑃𝑖[𝑛], the 

difference 𝑑𝑖,𝑗  between 𝑃𝑖[𝑗] and the adjacent 

previous point 𝑃𝑖[𝑗 − 1] on the laser line 𝑖 is 

calculated using equation (10). Comparing 𝑑𝑖,𝑗 with 

𝑇𝑎, if 𝑑𝑖,𝑗 > 𝑇𝑎, then 𝑃𝑖[𝑗] and 𝑃𝑖[𝑗 − 1] are 

considered as defect point 𝑃𝑖_𝑑𝑒𝑓𝑒𝑐𝑡 . All the defect 

points on the 𝑖 -th laser ray discovered in the above 

steps are calculated with two-dimensional Euclidean 

distances one by one from the last element of all 

small containers 𝑣 in the current 𝑉. Equation (14) is 

the calculation method. 

{
𝑑 = √(𝑉[𝑘]. 𝑏𝑎𝑐𝑘(). 𝑥 − 𝑃𝑖[𝑗 − 1]. 𝑥)2 + (𝑉[𝑘]. 𝑏𝑎𝑐𝑘(). 𝑦-𝑃𝑖[𝑗 − 1]. 𝑦)2

𝐷𝑖𝑠𝑡(𝑉[𝑘], 𝑃𝑖[𝑗-1])  = 𝑑

 (14) 

In equation (14), 𝑉[𝑘]. 𝑏𝑎𝑐𝑘()is the last element 

of the last container of the 𝑘 -th small container in 

the large container 𝑉. 𝑉[𝑘]. 𝑏𝑎𝑐𝑘(). 𝑥 and 

𝑉[𝑘]. 𝑏𝑎𝑐𝑘(). 𝑦 are the x and y coordinates of the 

defect point, respectively. 𝑃𝑖[𝑗 − 1]. 𝑥 and 𝑃𝑖[𝑗 −
1]. 𝑦 are the x and y coordinates of point 𝑃𝑖[𝑗 − 1], 
respectively. When 𝑑 < 𝑇𝑏, 𝑃𝑖[𝑗 − 1] is the point 

within the defect area represented by the 𝑉[𝑘] defect 

point set. Then, 𝑃𝑖[𝑗 − 1] is added to 𝑉[𝑘], making it 

the last element in the 𝑉[𝑘] clustering container. 

Figure 5 shows the processing method. 

The distance between two lasers is determined as 

𝑇𝑏 , and the linear distance 𝐿𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙， 𝑥 = 𝑥𝑖 −
𝑥𝑖−1 is set. To gather adjacent breakpoints with the 

same longitudinal tearing edge in a cluster, 𝑇𝑏 >
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Δ𝑥/𝑐𝑜𝑠𝜃(𝑇𝑏 < 𝑇𝑎) needs to be met. Otherwise, it 

will cause the defect points on both sides of the 

longitudinal tearing crack to be in the same cluster 

container, resulting in the inability of the subsequent 

algorithm in equation (15). 

𝐿𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑓/𝑣 = Δ𝑥
 (15) 

If the distance between the last element in 𝑉[𝑘] 
and the current processing line 𝑙𝑖 is less than 𝑇𝑐, i.e. 

(𝑥𝑖 − 𝑉[𝑘]. 𝑏𝑎𝑐𝑘(). 𝑥) < 𝑇𝑐, then a smaller 

container 𝑉[𝑘] needs to be maintained. If the 

distance between the last element in 𝑉[𝑘] and the 

current processing line 𝑙𝑖 is greater than 𝑇𝑐, i.e. (𝑥𝑖 −
𝑉[𝑘]. 𝑏𝑎𝑐𝑘(). 𝑥) > 𝑇𝑐, it will be removed. Figure 6 

shows the processing process. 

 

Fig. 5. Container deletion diagram 

 

To verify the size of all containers in the 

current 𝑉, a set length 𝐿𝑥, frame rate  𝑓, and cluster 

size discrimination threshold 𝑇𝑑 related to conveyor 

belt 𝑣 in the x-direction are introduced. If the 

detected defect length is greater than 𝐿𝑥, a deviation 

longitudinal tear defect will occur in equation (16). 

 

𝑇𝑑 = 𝐿𝑥𝑓/𝑣
 (16) 

 

4. SYSTEM PERFORMANCE 

VERIFICATION AND RESULT ANALYSIS 

 

To verify the feasibility and effectiveness of the 

proposed defect detection system, real-time 

performance analysis of image algorithms was 

conducted through pre positioning accuracy 

experiments, measurement error comparison under 

visibility changes, and other methods. Then, the real-

time performance and accuracy of system detection 

were calculated for performance verification 

analysis. 

 

4.1. Real-time analysis of image algorithms 

A total of 40 sets of pre-positioning accuracy 

experiments were conducted, using the pre-

positioning algorithm to obtain the absolute value of 

the rectangular midpoint coordinates minus the 

actual measured center coordinates as the error. 

Figure 6 showed the experimental results. The 

minimum Absolute Error (AE) on the x-axis was 

0.05mm, the maximum AE was 3.44 mm, and the 

average AE was 1.12 mm. The minimum AE on the 

y-axis was 0.08 mm, the maximum AE was 2.47 

mm, and the average AE was 0.71 mm. The 

minimum AE on the z-axis was 0.26 mm, the 

maximum AE was 13.49 mm, and the average AE 

was 4.26 mm. The error of the pre positioning 

algorithm on the x and y axes was very small, while 

the error on the z-axis was the largest. In terms of the 

pre positioning algorithm, the accuracy had reached 

the practical requirements. 
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Fig. 6. Error diagram of predetermined 

position 

 

Figure 7 was the output diagram of adjacent point 

intervals in a single frame point cloud. Figure 7 (a) 

was the output image of the neighbourhood spacing 

of a single frame point cloud obtained through 

complete surface scanning. The horizontal axis 

represented the coordinate value of the sample point 

on the y-axis, while the vertical axis represented the 

difference in the y-coordinate of adjacent points. The 

distribution of sampling points along the y-direction 

was basically consistent at the same working height 

from the output image laser line. Figure 7 (b) was the 

output image of the single frame point cloud 

neighbourhood spacing obtained by scanning the 

surface with cracks and defects. When there was a 

defect, a pair of adjacent sample points would 

appear, and the difference in their y-coordinate 

values was much greater than the difference in 

general neighbouring points. Therefore, the points 

with a large y-coordinate spacing were considered 

fault breakpoints. 

 

Fig. 7. Output diagram of the interval 

between adjacent points of a single frame 

point cloud 
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Due to the harsh working environment of the 

camera, suspended particles such as sand and dust in 

the atmosphere could reduce visibility, thereby 

affecting the imaging effect of binocular vision. 

Therefore, mean square error (MSE) and peak 

signal-to-noise ratio (PSNR) are used to characterize 

the visibility of the camera. The smaller MSE is, the 

closer the image is to the original image, and the 

larger PSNR is, the better the image quality is, the 

higher the visibility is. As can be seen from FIG. 8, 

when the amount of smoke continues to increase, the 

image quality of the binocular camera continues to 

decline, and the measurement error of the calibration 

object gradually increases. When there is no smoke, 

the measurement error of binocular camera is about 

3.16cm. With the increase of smoke amount, MSE 

gradually increased, PSNR gradually decreased, and 

image quality gradually deteriorated, resulting in a 

gradual increase in the measurement error, and the 

measurement error of the last group reached 6.51cm. 

Therefore, in practical application, the physical dust 

removal system can be set up. By setting the 

calibration object at a fixed position, the binocular 

camera can continuously observe the distance of the 

calibration object, and the physical dust removal 

system can be controlled through closed-loop 

feedback to keep the measurement error of the 

calibration object within the failure threshold, so as 

to prevent the binocular vision measurement method 

from failing due to low visibility. 
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Fig. 8. Relationship between measurement 

error and MSE and PSNR under visibility 

change 

 

10 tear maps were randomly selected for step-by-

step testing. Figure 9 showed each step of program 

processing for GPU embedded processors. Using the 

GPU embedded development platform, an image 

was processed in an average of only 20 to 30 

milliseconds. These experiments confirmed that the 

proposed method could quickly and accurately 

detect images. 
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Fig. 9. Time-consuming image processing 

(a) Rebar  

(b) Bucket teeth  

(c) Large stone  
Fig. 10. Noise detection 

 

4.2. Detection performance testing 

To test the detection performance of the system, 

the study analysed it from two aspects: real-time 

performance and accuracy. The specific detection 

method was to verify real-time performance by 

calculating the average processing time. The 



DIAGNOSTYKA, Vol. 25, No. 4 (2024)  

Zhang Z, Yang C, Huang C, Gao H, Bao Y: Detection of three-dimensional belt deviation and longitudinal… 

 

8 

accuracy was verified by calculating the ratio of the 

correct number of detections to the total number of 

detections. For the convenience of statistical 

analysis, n1 represented the number of times a tear 

had been detected in the event of tearing. n2 

represented the number of times a tear had been 

detected without tearing. n3 represented the number 

of times a tear hadn't been detected in the event of 

tearing. n4 represented the number of times a tear 

hadn't been detected without tearing. Classifying 

from 600 images, the values of n1, n2, n3, and n4 

were statistically obtained. Table 1 showed the test 

results of primary and secondary inspections. The 

probability of correct recognition by the system was 

above 80%, and the effect of secondary detection 

was better than that of primary detection. 

 
Table 1. Test results of primary detection and 

secondary detection 

/ Serial number 1 2 3 4 5 6 

Primary 

detection 

n1 45 44 45 46 45 43 

n2 23 33 29 19 27 36 

n3 30 37 32 29 31 41 

n4 502 486 494 509 497 480 

Secondary 

detection 

n1 49 47 49 49 49 48 

n2 5 13 3 6 4 9 

n3 7 19 5 7 5 12 

n4 539 521 543 538 542 531 

 

The accuracies of the first level detection and the 

second level detection were calculated and compared 

in Table 2. The highest accuracy rate of the first level 

detection was 92.5%, but the average value was only 

89.87%, which was not ideal for detection 

efficiency. The average accuracy of the two level 

detection was 97.37%, which was 7.5% higher than 

the first level detection. 

 
Table 2. Comparison results of accuracy of first-level 

detection and two-level detection 

Serial 

number 

First-order 

detection 

accuracy 

𝜂1/% 

Two levels 

of detection 

accuracy 

𝜂2/% 

𝛥𝜂 = 𝜂2 − 𝜂1 

/% 

1 91.2 98 6.8 

2 88.2 94.7 6.5 

3 89.8 98.7 8.9 

4 92.5 97.8 5.3 

5 90.3 98.5 8.2 

6 87.2 96.5 9.3 

Average 

value 
89.87 97.37 7.5 

 

Table 3 showed the comparison results of time 

consumption between primary and secondary 

testing. The average processing time of the first level 

detection was 19.45ms. The average processing time 

of the two-level detection was 23.73ms, which was 

only 4.28ms longer than the first level detection, 

meeting the real-time requirements of the detection 

system. Therefore, the study adopted two-stage 

detection to improve anti-interference ability and 

reduce false alarm rate, enabling the system to detect 

42.1 frames of images in real-time and accurately 

within one second. It provided a reliable and 

effective guarantee for the safety production of coal 

enterprises, greatly reducing the incidence of 

accidents. 

 
Table 3. Compares the time consuming results of 

first-level detection and two-level detection 

Serial 

number 

Average 

processing time 

of primary 

detection 𝑡1/ms 

Average 

processing time 

of secondary 

detection 𝑡2/ms 

𝛥𝑡 = 𝑡2 − 𝑡1 

/𝑚𝑠 

1 22.9 26.2 3.3 

2 19.5 23.1 3.6 

3 18 22.7 4.7 

4 20.1 25.9 5.8 

5 18.9 24.3 5.4 

6 17.3 20.2 2.9 

Average 

value 
19.45 23.73 4.28 

 

Taking into account vibration shocks, changes in 

lighting conditions, and the reason why the sensor 

works for a long time, the image may be 

accompanied by a small amount of noise. Therefore, 

the algorithm was used to add salt and pepper noise 

to the image at a 10% interval, and the foreign body 

was used to simulate the belt deviation and 

longitudinal tear defect. The test results after adding 

30% salt and pepper noise were shown in Figure 10. 

When the noise is greater than or equal to 40%, 

foreign bodies cannot be detected. 

 

5. CONCLUSION 

 

The current belt conveyor deviation and 

longitudinal tear detection technology has problems 

such as low efficiency, complex detection systems, 

large land occupation, and high costs. In this 

experiment, the overall structure was designed 

according to the actual detection requirements, and 

the collected preprocessed point cloud data were 

extracted using clustering, threshold segmentation, 

and other algorithms for deviation tearing features. 

These results confirmed that the error of the pre-

positioning algorithm on the x and y axes was very 

small, while the error on the z axis was the largest. 

In the absence of smoke, the measurement error of a 

binocular camera was around 3.03 cm. The system 

only took an average of 20 to 30 milliseconds to 

process an image. The average accuracy of the first 

level detection was only 89.87%, while the average 

accuracy of the second level detection was 97.37%, 

which was 7.5% higher than the first level detection. 

The average processing time of the first level 

detection was 19.45 ms. The average processing 

time of the two level detection was 23.73 ms, which 

was 4.28 ms longer than the first level detection and 

met the real-time requirements. The designed cloud-
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based conveyor belt tear visual detection system has 

been tested and meets practical detection 

requirements. To make this detection technology 

more intelligent and applicable, deep learning 

methods can be used in the future to achieve 

classification and defect diagnosis of different 

deviation tear features through independent learning. 
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