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Abstract  

This study employs an integrated methodology for the analysis and diagnosis of bearing faults in rotating 

machinery and wind turbine systems. The methodology begins by analyzing the original signal using 

Variational Mode Decomposition to extract distinct modes. Subsequently, the envelope is derived from the 

optimal mode and transformed into the frequency domain using Fast Fourier Transform to compute the 

envelope spectrum. The spectrum is segmented into specific frequency bands, and the energy within each band 

is quantified as features for training a K Nearest Neighbors classification model. The dataset is partitioned into 

training and testing subsets using cross-validation, and model performance is assessed using metrics such as 

accuracy and F1 score to ensure robust diagnostic capabilities. Comparative analysis of frequency spectra from 

real wind turbine signals highlights improvements in energy localization and distribution post-envelope 

processing. The proposed methodology is then applied to classify faults using the Case Western Reserve 

University dataset, demonstrating significant enhancements in diagnostic accuracy. These findings underscore 

the efficacy of the methodology in advancing fault diagnosis in complex machinery systems. 
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List of Symbols/Acronyms 

 

CEEMDAN – Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise; 

d – The diameter of rolling element; 

D – The pitch diameter; 

DWT – Discrete Wavelet Transform; 

EEMD – Ensemble Empirical Mode Decomposition; 

FFT – Fast Fourier Transform;  

i – The imaginary unit; 

IMF – Intrinsic Mode Function; 

N – sample size; 

VMD – Variational Mode Decomposition; 

x(n) – samples; 

X(t) – The original signal;  

β – contact angle. 

E – The expectation operator; 

Fi – Fault Frequency of inner race; 

δ(t) – The Dirac functions; 

||||2
2 – The L2 norm; 

* – The convolution operation; 

F0 – Rotation Frequency; 

uk(t) – The intrinsic mode function (IMF); 

x̅ –  the mean; 

ωk –  entered frequency. 
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1. INTRODUCTION  

 

In the contemporary era, where energy demands 

continue to rise, wind power has emerged as a 

substantial contributor to the renewable energy 

sector. The global installed capacity reached 

approximately 599 gigawatts in 2018, constituting a 

significant 25% of the world's electrical energy 

production from renewable sources [22][32]. 

Conversely, the operation and maintenance of wind 

turbines account for a substantial 35% of the overall 

costs [10]. The efficiency of this energy production 

is intricately linked to the condition of the system, 

necessitating a focus on enhancing operating 

conditions and implementing preventive 

maintenance measures to mitigate potential failures. 

Within the domain of wind turbines, researchers 

grapple with a spectrum of challenges posed by 

various types of faults, encompassing gearbox faults 

[12], generator faults [19], blade irregularities, and 

rotor malfunctions [20]. Among these, bearing 

failures have garnered particular attention due to 

their critical role as pivotal components within the 

wind turbine system [3][20]. 

 On the diagnostic front, a myriad of methods is 

employed to monitor and address these faults. This 

comprehensive approach includes the analysis of 
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vibration signals [8] and current signals [28], 

utilizing a diverse array of mathematical tools and 

classifier methods such as Artificial Neural 

Networks [9], K-Nearest Neighbors [15][21], and 

various machine learning and deep learning 

techniques [1][26].  

Numerous investigations have illuminated the 

efficiency of diagnosing and monitoring wind 

turbine systems through a meticulous analysis of 

vibration signals [33][8], spanning both their time 

and frequency domains. These signals encapsulate a 

wealth of information crucial for assessing the 

system's state.  

In the time domain, foundational metrics such as 

kurtosis, skewness, crest factor [2], and RMS [10] 

serve as pivotal indicators for monitoring system 

health. The transition from the time domain to the 

frequency domain is paramount for a nuanced 

analysis and diagnostics. Essential tools like the Fast 

Fourier Transform (FFT) [24] play a crucial role in 

this transition, enabling a more accurate examination 

of the signal's frequency components. A notable 

addition to this diagnostic framework is Spectral 

Kurtosis (SK), a measure of the non-Gaussianity of 

frequency components within the signal. 

Remarkably, SK emerges as a valuable technique 

specifically adept at monitoring wind turbine bearing 

failure [8]. As the analysis process advances towards 

heightened precision, it relies on an array of 

sophisticated filtering tools, including band-pass, 

low-pass, high-pass, and noise reduction 

methodologies. Among these tools, the pivotal 

Discrete Wavelet Transform (DWT) [4] stands out, 

recognized for its efficacy in enhancing signal 

clarity. Complementing these filtering techniques 

are mathematical tools adept at processing non-

linear and non-stationary signals, introducing a layer 

of complexity to the diagnostic approach. 

Noteworthy among these mathematical tools are 

Variational Mode Decomposition (VMD) [33], 

Empirical Mode Decomposition (EMD) [17], 

Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) 

[8], and various others [26]. 

These integral components contribute not only to 

the precision of the diagnostic process but also to a 

deeper understanding of the nuanced dynamics 

inherent in wind turbine systems. As we navigate 

through the intricacies of signal processing, the 

judicious use of these filtering and mathematical 

tools emerges as a cornerstone in unraveling the 

complexities associated with wind turbine health and 

performance. 

Signal processing, paired with a machine 

learning model emulating the intricacies of human 

cognition, stands as a transformative force in fault 

diagnosis. This research [15] leveraged the Wavelet 

Transform (WT) and Hilbert Huang Transform 

(HHT) in conjunction with the K-Nearest Neighbors 

(KNN) algorithm for wind turbine fault diagnosis. 

The evaluation incorporated performance metrics, 

such as Root Mean Square Error (RMSE) and Mean 

Square Error (MSE), to assess the effectiveness of 

their proposed approach. The obtained results 

demonstrated the efficacy of the methodology, 

yielding satisfactory outcomes in the study. This 

paper [21] seamlessly combined VMD and singular 

value decomposition (SVD) techniques for 

extracting frequency features, while integrating the 

K-Nearest Neighbors (KNN) algorithm to enhance 

fault classification in rotation machinery. This 

unified approach showcased improved accuracy and 

reliability in fault diagnosis. 

In this paper, VMD analysis was used to extract 

an optimal signal that represents fault characteristics. 

Subsequently, a feature extraction method from the 

envelope spectrum of the signal was integrated, 

focusing on the frequency energy for each band from 

0 to 500 Hz, where bearing fault frequencies are 

typically located. This range was divided into five 

bands, with each band's frequency energy value 

representing a feature. These features were then used 

with a KNN model for fault diagnosis, aiming to 

enhance classification accuracy by improving the 

feature source prior to algorithm optimization. 

 

2. METHODS AND MATERIALS  

 

2.1. Variational Mode Decomposition 

The VMD method is used in this work to process 

non-linear, non-stationary signals for diagnosing 

faults in rotating machines, in particular bearing 

faults in wind turbines [33]. It decomposes the signal 

into sub-signals called "IMF" based on known initial 

conditions (α (penalty factor), τ (relative tolerance), 

k (number of IMFs), max iteration) as are 

represented by the following equations. 

 X(t) = ∑ 𝑢𝑘(𝑡)𝐾
𝑘=1   (1) 

To obtain the unilateral spectrum of the IMF, we 

use the Hilbert transform as described below 

[31][32]: 

 [𝛿(𝑡) +
𝑖

𝜋𝑡
] ∗ 𝑢𝑘(𝑡)𝑒−𝑖𝜔𝑘𝑡  (2) 

The fundamental question of the VMD algorithm 

is how to obtain the solution of the variational 

problem, which is formulated in equation (5) as 

follows [27]: 

 
𝑚𝑖𝑛

{𝑢𝑘}, {𝜔𝑘} 
{∑ ||𝜕𝑡[(𝛿(𝑡) +

𝑖

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]𝑒−𝑖𝜔𝑘𝑡||2

2 𝑘 }     (3) 

To solve the variational model, we introduce the 

Lagrange multiplier λ(t) and the penalty factors α [30 

- 31], The augmented Lagrange function is expressed 

as follows: 

𝐿({𝑢𝑘}, {𝜔𝑘}, {𝜆(𝑡)}) = 𝛼 ∑ ||𝜕𝑡[(𝛿(𝑡) +
𝑖

𝜋𝑡
) ∗𝐾

𝑘=1

𝑢𝑘(𝑡)]𝑒−𝑖𝜔𝑘𝑡||2
2 + ||𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)||2

2 +𝐾
𝑘=1

〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝐾
𝑘=1 〉                                     (4) 

We then update factors 𝑢𝑘, 𝜔𝑘  and 𝜆(𝑡) 
iteratively until we reach the optimal solution, The 

algorithm aims to satisfy the convergence condition 

[22]. 
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2.2. Data base 

a. Wind turbine bearing database 

The dataset [25] was collected from a 2 MW 

wind turbine high-speed shaft driven by a 20-tooth 

pinion gear [5]. A vibration signal was acquired for 

6 seconds daily over a period of 50 consecutive days. 

An inner race fault developed and caused bearing 

failure throughout the 50-day period. The sampling 

rate was 97657 samples per second for 6 seconds. 

The data depicts the variation in speed of a high-

speed shaft on a wind turbine over a 6-second 

interval. The shaft's speed fluctuates between its 

minimum and maximum values, showcasing a 

change of 3.6%. This variability can impact the 

spectral characteristics of bearing fault frequencies, 

including cage, ball, inner race, and outer race rates, 

as detailed in the following table. 

 
Table 1. Wind turbine bearing rates 

Shaft\Bearing 

Fault frequency 

Cage Ball Inner 

race 

Outer 

race 

Low: 30.9 (Hz) 12.98 88.69 292.3 207.7 

High: 32.01 (Hz) 13.44 91.88 302.8 215.1 

 

The data used in the application of the signal 

analysis methodology consists of two signals: the 

healthy condition signal and the signals from April 

20 to April 25 (as the fault develops and the 

characteristics of the fault become more detailed in 

the later days). (The database used is MATLAB Data 

(.mat)). 

 

Fig. 1. The signals used 

 

b. Case Western Reserve university database 

The CWRU database [7] is a renowned collection 

of mechanical vibration datasets used for evaluating 

bearing system performance and diagnosing faults. 

It includes multiple datasets with detailed 

information on fault conditions and healthy states. 

Table 2 outlines various fault characteristics 

recorded, while Table 3 details how the test data was 

prepared for our study. 

 

2.3. The proposed methods 

Variational Mode Decomposition is included to 

ensure optimized data for advanced analysis. 
 

Table 2. CWRU bearing information 

Drive end bearing 

6205-2RS JEM 

SKF (Fault Types) 

Cage 

 

Ball 

 

Inner 

race 

Outer 

race 

Fault frequencies 

(Hz) 

11.9 

(Hz) 

141.2 

(Hz) 

162.2 

(Hz) 

107.4 

(Hz) 

 

 
Fig. 2. The test bench 

 

Table 3. CWRU database description 

Fault type Inner 

race 

fault 

Ball 

fault 

Outer 

race 

fault 

Healthy 

condition 

Operating 

speed 

(rpm) 

1797 

1772 

1797 

1772 

1797 

 

1797 

 

Diameter 

(inch) 

0.007’ 0.007’ 0.007’ 0.007’ 

Number 

of signals 

2 2 3 1 

Number 

of sub 

signals 

30 30 45 30 

Samples 

per sub 

signals 

8000 8000 8000 8000 

 

To extract the optimal IMF, many techniques are 

used to study and evaluate the quality of the modes 

obtained, such as Kurtosis, correlation, entropy 

values factor [2][6] [30 - 31].  

We propose the mean kurtosis and RMSE to 

select the optimal mode. 

Note that the mathematical expression for 

kurtosis and RMSE is as follows in order [16]: 

  𝐾𝑢 =  
1

𝑁

∑ (𝑥(𝑛)−𝑥̅)4 𝑁
𝑛=1

[(
1

𝑁
) ∑ (𝑥(𝑛)−𝑥̅)2]2𝑁

𝑛=1

 (5) 

 𝑅𝑀𝑆𝐸 = √(
1

𝑁
∑ (𝑆𝑖 − 𝑆′𝑖)2𝑁

𝑖=1 )  (6) 

Where the 𝑆𝑖 and 𝑆′𝑖  represent the values of the 

signals. 

Then, we apply an Envelope Hilbert transform to 

enable spectral analysis and observe the 

manifestation of vibrational energy related to the 

defect. The Hilbert transform equation is given in the 

following two formulations [13][14]: 

 𝐻[𝑥(𝑡)]  =  𝑥(𝑡) ∗
1

𝜋𝑡 
 (7) 

 𝐻[𝑥(𝑡)] =  
1

𝜋
 ∫

𝑋(𝜏)

𝑡− 𝜏
 𝑑𝜏

∞

−∞
 (8) 

The bearing failure frequencies formulae are 

given as below [6], where N is the angular velocity 

of the rotor: 
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 𝐹𝑖 =
𝑛

2

𝑁

60
(1 +

𝑑

𝐷
𝑐𝑜𝑠 𝛽)  (9) 

 𝐹𝑜 =
𝑛

2

𝑁

60
(1 −

𝑑

𝐷
𝑐𝑜𝑠 𝛽)  (10) 

 𝐹𝑟𝑒 =
𝑛

2𝑑

𝑁

60
(1 − (

𝑑

𝐷
𝑐𝑜𝑠 𝛽)2)  (11) 

 𝐹𝑐 =
𝑁

2×60
(1 −

𝑑

𝐷
𝑐𝑜𝑠 𝛽)  (12) 

 

The proposed approach is shown in the Fig. 3.  

Description of proposed approach: 

-  Step 1: The VMD method is used to decompose 

the signals according to appropriate criteria [α 

(2000), τ (0.005), k (5), max iteration=500].  

-  Step 2: We extract the optimal IMF using the 

mean kurtosis of IMFs and RMSE.  

- Step 3: Obtain the Envelope and analyze the 

results. 

 
Fig. 3. The proposed approach 

 

Additionally, we employ machine learning for 

diagnosis through KNN following the approach 

illustrated in the Fig.4. 

The KNN classification algorithm relies on 

finding the nearest neighbors for the test sample. 

When a test sample is provided, the algorithm 

searches the pattern space to locate the K training 

samples closest to it, and then calculates the 

distances to these neighbors. If a particular class has 

the maximum number of nearest neighbors, the test 

sample is classified into that class.[15][21] 

Methodology for Fault Diagnosis Using Nearest 

Neighbors: 

- Step 1: Collect the vibrational signals during 

different operational states, including normal 

operation, inner race faults, ball fault and outer 

race fault scenarios, after processing them 

following the proposed approach using VMD we 

obtain the envelope for each signal. 

- Step 2:  Calculate Frequency Domain Energy using 

the following steps: 

1. Use the FFT function in MATLAB to transform 

the signal.  

2. Compute the absolute value of the frequency 

spectrum. 

3. Define the frequency bands (Hz) [0, 100], [100, 

200], [200, 300], [300, 400], [400, 500]. 

4. Use the FFT of the signal to calculate the energy 

in these bands by summing the squared 

frequency values. 

Represent the data in a matrix X where rows 

correspond to signals and columns to extracted 

features. 

- Step 3: Use MATLAB’s (fitcknn) to train the KNN 

model on the labelled insurance dataset, which 

includes: Healthy, inner race fault, ball fault and 

outer race fault. 

- Step 4: Evaluate the trained KNN model using a 

separate set of labeled test data to assess its 

generalization performance. 

 

 
Fig. 4. The proposed method for KNN 

classification 

 

3. RESULTS AND DISCUSION 

 

We apply the methodology illustrated in Figure 3 

to wind turbine bearing signals to compare the 

results with the envelope of the original signals.  

Fig 5 illustrates the envelope spectrums of the 

original signals. 

Next, we apply VMD to the eight signals and 

extract the optimal mode based on RMSE values and 

kurtosis. The results are presented in the following 

table 4. 

When comparing the envelope spectrum before 

and after processing using Variational Mode 

Decomposition, we notice some significant changes 

in the energy representation of the signal. Before 

processing, the original envelope spectrum contains 

a variety of peaks that may represent true signals, 

noise, or unwanted interferences, and the energy is 

distributed  across  a   wide   range  of   frequencies,  
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Fig. 5. Envelope spectrum of the signals 

before processing 

 
Table 4. Kurtosis and RMSE values for each IMF 

Signals IMFs Kurtosis RMSE 

 

Signal 

10/03 

1 3.059 1.921 

2 3.074 1.437 

3 2.988 1.606 

4 2.979 1.866 

5 2.946 1.955 

 

Signal 

13/03 

1 3.007 1.886 

2 3.015 1.497 

3 3.020 1.488 

4 2.960 1.828 

5 2.966 1.918 

 

Signal 

20/04 

1 3.454 2.246 

2 4.466 2.066 

3 5.768 1.603 

4 3.014 2.234 

5 2.970 2.244 

 

Signal 

21/04 

1 3.541 2.387 

2 4.449 1.807 

3 4.435 1.868 

4 3.146 2.330 

5 2.976 2.355 

 

Signal 

22/04 

1 3.374 2.185 

2 5.699 2.087 

3 3.875 1.688 

4 3.859 1.821 

5 3.000 2.141 

 

Signal 

23/04 

1 3.496 2.348 

2 4.492 1.771 

3 4.073 1.808 

4 3.043 2.321 

5 2.983 2.399 

 

Signal 

24/04 

1 3.211 3.116 

2 5.250 2.197 

3 5.374 2.343 

4 3.251 3.034 

5 2.976 3.058 

 

Signal 

25/04 

1 3.218 2.885 

2 4.103 2.647 

3 5.643 2.013 

4 5.799 2.567 

5 2.983 2.807 

 

Fig. 6 represents the envelope spectrum signal of 

each IMF selected. 

 

Fig. 6. Envelope spectrum of the IMFs 

selected 

 

making it difficult to identify important features. 

After applying VMD, the energy is redistributed to 

concentrate in specific frequency bands that 

correspond to the extracted modes. The peaks that 

were previously obscured by noise or interferences 

become more prominent and clearer, making it easier 

to identify important frequency features. The goal is 

to improve the signal for feature extraction in the 

frequency range of 0 to 500 Hz. 

 
Table 5. Frequency energy values for each processed 

envelope signal in specified frequency bands: Signals 

(10/03; 13/03; 20/04; 21/04; 22/04; 23/04; 24/04; 25/04)  

[0,100

] Hz 

[100,200

] Hz 

[200,300

] Hz 

[300,400

] Hz 

[400,500

] Hz 

2.30 0.155 0.140 0.123 0.095 

1.727 0.095 0.082 0.078 0.070 

3.543 0.258 0.428 0.224 0.148 

3.088 0.272 0.455 0.211 0.152 

2.568 0.214 0.305 0.186 0.153 

3.046 0.264 0.438 0.217 0.143 

5.703 0.634 1.351 0.470 0.326 

5.464 0.523 1.045 0.624 0.237 

 
Table 6. Frequency energy values for original 

envelope signals in specified frequency bands: Signals 

(10/03; 13/03; 20/04; 21/04; 22/04; 23/04; 24/04 ;25/04)  

[0,100

] Hz 

[100,200

] Hz 

[200,300

] Hz 

[300,400

] Hz 

[400,500

] Hz 

6.454 0.110 0.111 0.094 0.083 

6.236 0.093 0.085 0.078 0.082 

8.748 0.235 0.447 0.206 0.121 

9.458 0.272 0.735 0.289 0.198 

8.073 0.198 0.401 0.188 0.166 

9.296 0.2620 0.616 0.285 0.188 

15.01 0.641 2.331 0.738 0.434 

13.26 0.479 1.254 0.597 0.257 

 

Through the tables (5.6), we observe clear 

distinctions between the values of faulty and healthy 

signals. Additionally, we notice that the proximity of 

values for the inner race fault in the processed signal 

indicates improved accuracy in diagnosis and 

classification. 

Based on the prepared data of Case Western 

Reserve University as mentioned in section (2.2), we 
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divide the data into 80% for training and 20% for 

testing. We repeat this process five times, alternating 

between training and testing datasets. Prior to using 

the proposed methodology, the results were 

inaccurate (27% accuracy). After implementing the 

methodology, the results significantly improved, as 

detailed below. 

The faults in these data were diagnosed using the 

Improved Grey Wolf Optimizer SVM method [23], 

achieving a high accuracy of 98.71%, whereas the 

proposed methodology yielded a classification 

accuracy of 98.81% in handling this data. 

 

 
Fig. 7. Confusion matrix-iteration 1 

 

 
Fig. 8. Confusion matrix-iteration 2 

 

 
Fig. 9. Confusion matrix-iteration 3 

 

5. CONCLUSION 

 

This research was conducted in sequential stages 

to analyze and diagnose bearing faults in wind 

turbine systems using Variational Mode 

Decomposition and KNN classification. After 

applying VMD to the signals, filtered signals 

representing optimal modes for each signal were 

obtained. These modes were utilized to extract the 

envelope and compute the envelope spectrum for the 

eight conditions of wind turbine signals. 
 

 
Fig. 10. Confusion matrix-iteration 4 

 

 
Fig. 11. Confusion matrix-iteration 5 

 

We observed improvements in energy 

concentration and distribution among different fault 

conditions. Frequency energy was extracted by 

dividing the envelope spectrum into ranges from 0 to 

100 Hz, 100 to 200 Hz, 200 to 300 Hz, 300 to 400 

Hz and 400 to 500Hz. We observed convergence in 

energy values for the fault condition within these 

ranges, indicating high accuracy in classification.  

The developed model of KNN was tested using 

the CWRU dataset, where the model demonstrated 

good performance with an accuracy of 98.81% and 

an F1 score of 98.72%. These results confirm the 

model's capability to effectively handle fault 

classifications and accurately identify fault 

conditions. 

Future work could propose further enhancement 

of the method through algorithmic refinement of 

VMD partitioning and extraction of more precise 

features, applying them to more complex scenarios. 
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