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Abstract 

Automated industrial equipment is an important production equipment in modern industry, but the 

occurrence of equipment failures may seriously affect production capacity. A method based on multi-attribute 

decision fusion was studied and designed for fault detection of automation industrial equipment. During the 

process, a mapping structure between the data layer and the pattern layer of the knowledge graph was designed. 

Knowledge extraction was performed on unstructured and semi-structured texts, and the fault knowledge graph 

was established through knowledge verification operations. Then, the fault alarm data was processed using 

Cypher query language, and the semantics were blurred using fuzzy set theory. Finally, the correctness of the 

fault chain was analyzed through attribute weights and attribute value matrices. Then it searched for the source 

fault node of the fault. The experimental results showed that the research method maintains an average accuracy 

of 0.8046 or above in the mean accuracy test when the number of traceability fault chains is 17-18. In the 

analysis of actual fault detection effectiveness, the research method focused on the fault detection time of the 

8-station robotic arm swing plate robot when the number of fault nodes involved increased to 12, which was 

only 72ms. This indicated that the research method can effectively detect faults in automated industrial 

equipment and has more accurate detection accuracy. 

 

Keywords: automation equipment, fault detection, knowledge graph, multi attribute decision-making, 

relative closeness 

 

1. INTRODUCTION 

 

In the trend of vigorously developing intelligent 

manufacturing in various countries around the 

world, automated industrial equipment that 

combines electrical systems, mechanical structures, 

and intelligent systems has become an important 

research and development object [1]. However, 

during the operation of automated industrial 

equipment, it may be affected by external 

environments or its own instructions may be 

disrupted, leading to malfunctions. Stopping 

production due to malfunctions will reduce output 

and cause economic losses to the factory. When a 

malfunction occurs, the system of automated 

industrial equipment will leave fault information [2]. 

However, automated industrial equipment that 

involves multiple functions and operations leaves a 

lot of fault information, making it difficult for 

technical personnel to quickly extract key content 

from these fault information [3]. There are certain 

difficulties in detecting faults in automated industrial 

equipment. At present, there are methods for 

industrial equipment fault detection through 

unsupervised learning, neural network and other 

 
Received 2024-04-02; Accepted 2024-08-21; Available online 2024-10-25 

© 2024 by the Authors. Licensee Polish Society of Technical Diagnostics (Warsaw. Poland). This article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 
 

technologies. However, some of these methods 

require extensive learning of fault information 

during operation, resulting in insufficient work 

efficiency, while others require examples for 

comparison and lack generalization for complex 

fault type combinations. Knowledge graphs can be 

extracted using natural language processing 

techniques, connecting entities and constructing 

chains of fault occurrence [4]. Knowledge graphs 

have natural advantages in representing complex 

relationships among entities. Compared with 

traditional relational databases, knowledge graphs 

can represent and manage the relationships between 

entities more intuitively and flexibly, which is 

particularly important for the fault detection of 

automated industrial equipment, because equipment 

failures often involve complex interactions between 

multiple components and systems. Multi attribute 

decision-making technology can trace the source of 

events through the attribute values of different 

information, thereby obtaining the source 

information of faults. In this context, the knowledge 

graph technology is applied to the fault detection 

field of automatic industrial equipment, and the fault 

information is organized and mined efficiently by 
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constructing fault knowledge graph. In addition, 

compared with other existing methods that only 

construct knowledge graph or consider multiple 

factors, this study innovatively considers multiple 

factors and attributes in the fault detection process 

by integrating multi-attribute decision-making 

technology. And a complete set of fault detection 

process is constructed, from fault information 

collection, knowledge extraction to fault chain 

construction and analysis, in order to provide a 

certain technical reference for the development of 

automation equipment through the innovation of 

technical ideas. 

The research mainly consists of four parts. The 

first part discusses the relevant research results of 

equipment fault detection methods and multi-

attribute decision fusion technology. The second part 

is the design of an automated industrial equipment 

fault detection method based on multi-attribute 

decision fusion in the knowledge graph. The third 

part is to analyze the effectiveness of the research 

method. The fourth part discusses and summarizes 

the entire text. 

 

2. RELATED WORKS 

 

With the rapid development of the manufacturing 

industry, more and more scholars have begun to 

realize the importance of fault detection technology 

for automated industrial equipment used in the 

manufacturing industry. Some scholars have 

conducted research on equipment fault detection 

methods. Zhan et al. proposed a chip level gate 

sensing carbon based FET gas sensor method for 

real-time detection of H2S and early fault diagnosis 

to address the potential damage caused by SF6 gas 

decomposition products to power equipment. The 

results show that the detection limit of the sensor can 

reach 20 ppb, and the response deviation does not 

exceed 3% [5]. Dong and Bi proposed an effective 

method for quickly detecting mechanical faults in 

load cells through simulation experiments to address 

the lack of mechanical fault diagnosis methods for 

weighing sensors. It used a sliding window to obtain 

the ratio of the standard deviation relative to the 

normal output as the testing basis. The experimental 

results show that this method can monitor the 

operating status of multiple devices in real time [6]. 

Ghods and Faiz analyzed the performance of 

permanent magnet vernier generators under healthy 

and different mechanical fault conditions. This study 

used two-dimensional and three-dimensional time 

stepping finite element methods to predict the 

performance of generators. It compared healthy and 

faulty generators by developing analytical models to 

estimate air gap permeability and induced voltage. 

Accurate evaluation of PMVG performance has been 

achieved, providing reliable power supply for traffic 

law enforcement cameras and driving applications 

[7]. Nguyen and Huang proposed a deep learning 

method based on sound analysis for machine fault 

detection. By preprocessing and feature extraction of 

sound signals generated by machines under different 

operating conditions, convolutional neural networks 

were used to automatically learn the required 

features for classification. The results show that the 

model exhibits high accuracy in fault detection of 

known and unknown machines, proving its good 

performance in machine fault detection [8]. 

Some scholars have also conducted research on 

multi-attribute decision fusion technology. 

Mahmood and Ali proposed a complex q-order 

orthogonal fuzzy set method based on the 

Hamiltonian aggregation operator to address 

environmental conflicts in gold mining 

development. Through comparative analysis and 

sensitivity analysis, it is shown that the multi-

attribute group decision-making problem method 

has high reliability [9]. Xie et al. focused on the key 

issue of determining the resolution coefficient in 

grey entropy correlation analysis and studied the 

effect of discarded bricks on their properties through 

mixed recycled coarse aggregate experiments. It 

used indoor experiments and grey entropy theory to 

analyze the correlation between performance 

indicators and mechanical properties. The results 

show that the resolution coefficient can be within a 

range of values, providing guiding conclusions [10]. 

Lan addressed the challenges of water resource 

management in the Mekong River Basin and used 

the Analytic Hierarchy Process to analyze and 

evaluate water resource development plans. The 

research results provide a reference for the analysis 

method to formulate appropriate water resource 

policies based on the best cooperation plan [11]. 

Researchers such as Liu et al. proposed an analysis 

method based on fuzzy comprehensive evaluation to 

address the spatiotemporal complexity of roadway 

failure in deep metal mines. The results indicate that 

the accuracy of the method is close to 90%, 

achieving quantitative assessment of the risk of 

large-scale regional tunnel damage [12]. Liu and 

Liang addressed the issue of evaluating the 

humanistic literacy of medical laboratory students by 

using the entropy weight method to determine the 

weights of each factor, and combined with the fuzzy 

comprehensive evaluation method to scientifically 

rank the importance of humanistic literacy. The 

results show that this method provides a scientific, 

objective, and comprehensive evaluation system for 

the humanistic literacy of medical laboratory 

students [13]. 

In summary, although multi-attribute decision 

fusion technology has been studied and applied in 

many fields, there is still relatively little research on 

fault detection in automated industrial equipment. In 

view of this, the study attempts to apply multi-

attribute decision fusion technology to the fault 

detection of automated industrial equipment and 
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design a detection method. This is to provide feasible 

technical references for the automation industry. 

3. DESIGN OF FAULT DETECTION 

TECHNOLOGY BASED ON MULTI 

ATTRIBUTE DECISION FUSION IN 

KNOWLEDGE GRAPH 

 

The fault detection technology for automated 

industrial equipment helps industrial technicians to 

maintain and repair equipment more quickly [14-

15]. This section elaborates on the technical means 

used in the automated industrial equipment fault 

detection method based on multi-attribute decision 

fusion in the knowledge graph of research and 

design. 

 

3.1. Establishment of knowledge graph for 

automation industrial equipment faults 

Automated industrial equipment, as an important 

processing and production equipment in modern 

industry, has a large number of electronic 

components and control systems working 

simultaneously during operation [16-17]. During 

operation, equipment systems may malfunction and 

generate corresponding data alerts [18-19]. 

Knowledge graphs can analyze the connections 

between alert data. This study uses knowledge 

graphs as the foundation for fault detection in 

automated industrial equipment. The knowledge 

graph can contain many types of entities, such as the 

cause of failure, involved modules, fault levels, fault 

consequences, treatment methods, and the fault 

itself. These entities are organized through 

predefined patterns, forming a complete view of the 

chain of failure occurrence. In addition, knowledge 

graph can integrate information from different data 

sources, including historical fault records, operation 

logs, device parameters, etc., to provide 

comprehensive data support for fault detection. 

Knowledge graph can express various types of 

relationships between entities, which define the 

logical sequence and dependencies of the fault 

occurrence chain. There is a complete chain of faults 

that occur during the operation of automated 

industrial robots. Based on the fault occurrence 

chain, this study sets up six types of knowledge 

entities: fault antecedents, involved modules, fault 

levels, fault consequences, handling methods, and 

faults. The six types of entities use CF, FM, EL, FE, 

EL, and FD as marking symbols. The mapping 

structure between the data layer and the pattern layer 

of the designed knowledge graph is shown in Figure 

1. 

As shown in Figure 1, there are three main types 

of relationships between different entities in the data 

layer and pattern layer of the knowledge graph: 

triggering, processing, and occurrence. A complete 

chain of fault occurrence is formed by triggering the 

fault entity before the fault, and then causing the 

consequences of the fault or triggering other fault 

entities again. It evaluates the fault level based on the 

final manifestation of the fault. The pattern layer is 

an induction of the structure and data categories 

contained in the data layer, and the content between 

the two layers is bi-directional mapped. The design 

of the pattern layer is determined by the data 

structure of the text contained in the original data. It 

first designs the pattern layer during construction, 

and then determines the content of the data layer 

based on the pattern layer. When extracting 

knowledge, text preprocessing is necessary to obtain 

data with standardized formats. In order to reduce 

noise interference in the data and minimize the 

impact between data, this study used text sharding to 

process semi-structured text and text annotation to 

process unstructured text. When extracting 

knowledge from semi-structured text, it obtains 

knowledge triplets as shown in equation (1). 

𝐺 =< 𝐸, 𝐴, 𝑉 >                      (1) 

In equation (1), 𝐺 represents a knowledge triplet. 

𝐸  represents the entity. 𝐴  represents attribute. 𝑉 

represents the attribute value. The attribute values 

are obtained by combining historical alarms of 

automated industrial equipment with manual 

calibration results. When extracting knowledge from 

unstructured text, it uses a Transformer based 

bidirectional encoding model for entity recognition. 

In the bidirectional encoding model based on 

Transformer, the Encoder plays a crucial role, and 

the Encoder structure is shown in Figure 2. 

Communication 

module

System modules

Unable to execute 

program

Communication 

failure

Restart the 

system

Task Stop

No communication 

with security system

Involving 

modules

Cause of 

malfunction

Processing 

method

Fault entity

Fault level

Consequences 

of malfunction

Other faulty 

entities

 

Fig. 1. Knowledge graph mapping structure 
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Key

Value

Query

 
Fig. 2. Encoder structure 

 

As shown in Figure 2, the Encoder starts with an 

Embedding, which includes two operations: 

positional embedding and input sequence. The input 

sequence takes the signal word used for each fault 

alarm as the basic unit, sets appropriate word 

dimensions, and expresses them mathematically. 

Position embedding expresses the order of words, 

and the encoding at even numbered positions is 

shown in equation (2). 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/10000
2𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)      (2) 

In equation (2), 𝑃𝐸(𝑝𝑜𝑠,2𝑖)  represents even 

position encoding. 𝑝𝑜𝑠 represents the position of the 

word. 𝑑𝑚𝑜𝑑 𝑒𝑙  represents dimension. 2𝑖  represents 

the total number of positions. The encoding at odd 

positions is shown in equation (3). 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)       (3) 

In equation (3), 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1)  represents odd 

position encoding. After Embedding, it becomes a 

multi head attention layer, where Embedding inputs 

Key, Value, and Query into the multi head attention 

layer. The multi head attention mechanism obtains 

multiple sets of matrices from three matrices and 

maps them. The calculation of attention value is 

shown in equation (4). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉    (4) 

In equation (4), 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  represents 

attention value. 𝑄  represents the Query vector. 𝐾𝑇 

represents the Key matrix. 𝑉  represents the Value 

vector. 𝑑𝑘  represents the number of Key vectors. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥  represents normalized calculation. Both 

multi head attention and feedforward neural 

networks are connected to a normalization layer. The 

input of the feedforward neural network is a matrix 

compressed from normalized multi head attention, 

which is processed and normalized again to obtain 

the Encoder output value. Finally, it undergoes 

another knowledge validation, as shown in Figure 3. 

 

As shown in Figure 3, the data used for 

knowledge validation consists of the knowledge set 

produced by the current project's knowledge 

extraction and the knowledge set produced from 

other sources. It first performs pattern layer rule 

validation that includes relationship rules and 

verification pattern layer structures. It then performs 

knowledge triplet category validation, which 

includes triplet sentence vector expression and 

category validation. After completing knowledge 

validation, the output of the knowledge set to be 

updated is used to classify sentence vectors using 

cosine similarity calculation, as shown in equation 

(5). 

𝑆
∑ (𝑥𝑖𝑦𝑖)
𝑛
𝑖=1

√∑ (𝑥𝑖)
2𝑛

𝑖=1 ×√∑ (𝑦𝑖)
2𝑛

𝑖=1
𝑐𝑜𝑠

             (5) 

 

In equation (5), 𝑆𝑐𝑜𝑠 represents cosine similarity. 

𝑥𝑖 , 𝑦𝑖 represent the two sentence vectors that need to 

be compared, respectively. It updates the knowledge 

set through sentence vectors and establishes a fault 

knowledge graph. 

Current project 

knowledge set

Knowledge sets 

from other sources

Knowledge triplet 

to be verified
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rules

Pattern layer 

rule validation

Verification 

pattern layer 

structure

Triple 

Sentence 

Vector 

Expression

Knowledge 

triplet category 

verification

Category 

validation

Knowledge set 
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Fig. 3. Knowledge verification process 
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3.2. Fault detection technology for automated 

industrial equipment based on multi-

attribute decision-making 

After a malfunction occurs in automated 

industrial equipment, the system will generate an 

alarm message [20]. The research and design of 

automated industrial equipment fault detection 

technology rely on the alarm information of 

knowledge graphs to search for the relationship 

direction of information and find the complete fault 

triggering chain. In order to achieve information 

retrieval, the Neo4j graph database is used as the 

storage location for knowledge graphs, and the 

Cypher query language is used for data processing. 

The main query code for the research design is 

shown in Figure 4. 

As shown in Figure 4, during the query process, 

six basic operations were studied and designed, and 

complex operations were all expanded and extended 

based on these six operations. The basic operations 

cover querying ordinary paths between entities and 

querying multiple deep relationships between 

entities. The path obtained from the query operation 

is the mining result obtained from fault tracing in the 

knowledge graph. By supplementing the attribute 

and entity information in the path, a fault tracing path 

structure is established as shown in Figure 5. 

As shown in Figure 5, when conducting fault tracing, 

the complete fault tracing path includes fault nodes, 

fault consequence nodes, module nodes, fault cause 

nodes, and fault level nodes. Automated industrial 

equipment failures may involve multiple entities 

pointing to the same fault or one entity pointing to 

multiple faults. This study integrates multi-attribute 

decision-making with knowledge graphs to analyze 

fault alarms. To ensure the feasibility and 

independence of fault detection operations, a fault 

chain decision attribute tree is established, which 

includes three primary branches: fault path 

relationships, fault path entities, and fault 

traceability entities. The fault path relationship 

includes the frequency of path occurrence and the 

length of the path. The fault path entity includes the 

 

Positive multi depth relationship path

Query 

operation

Reverse Multi Depth Relationship Path

The shortest path between entities

All paths between entities (Layer limit)

All paths between entities (Direction 

restrictions)

Bidirectional multi depth relationship 

path

$ match data=(n {name:’fault1’}) -[*]-> 

(m{name:’fault2’}) return data

$ match data=(n {uniqueID:’FD_10075’}) 

<-[*]-(m) return data

$ match (n {name: ’fault1’}), (m 

{name:’fault2’}),p=shortestpath((n) -[r*]- 

(m)) return p, r

$ match (n {name:’fault1’}), (m {name: 

’fault2’}),p=((n)-[*..5]-(m)) return p, r

$ match (n), (m {uniqueID:’FD_10075’}), 

p=((n)<-[*]- (m)) return n, m, p

$ match (p) -[*]-> (n {name:’fault 1’}) -

[*]-> (k{name: ’fault2’}) return p, n, k

 
Fig. 4. Main query operations and codes 

 

Fault Cause Node

Module Node
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Fig. 5. Fault tracing path structure 
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semantic value of fault level, entity semantic value, 

and entity occurrence frequency. The fault tracing 

entity includes the semantic value of the source fault, 

the discrimination degree of the head and tail entity 

modules, and the frequency of source fault 

occurrence. However, some semantics do not have 

exact numerical values, and research is conducted 

using fuzzy set theory for semantic fuzziness. Fuzzy 

set theory is particularly suitable for dealing with 

fuzziness and uncertainty problems, which are often 

encountered in automatic industrial equipment fault 

detection. Fuzzy sets provide an intuitive way to 

quantify the semantic value concept of faults, 

whereas Artificial Neural networks may require 

more complex feature engineering in this regard. It 

uses a triangle membership function to quantify the 

semantic values of the text, as shown in equation (6). 

𝜇𝑠(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑠𝑙

𝑥−𝑠𝑙

𝑠𝑡−𝑠𝑙
, 𝑠𝑙 < 𝑥 ≤ 𝑠𝑡

𝑥−𝑠𝑢

𝑠𝑡−𝑠𝑢
, 𝑠𝑡 < 𝑥 ≤ 𝑠𝑢

0, 𝑥 > 𝑠𝑢 }
 
 

 
 

             (6) 

In equation (6), 𝜇𝑠(𝑥)  represents the 

membership degree value. 𝑥 represents the element. 

𝑠𝑙 , 𝑠𝑡 , 𝑠𝑢 represent triangular fuzzy numbers. It sets 

seven levels of semantic intervals for language 

variables, and determines the semantic attributes of 

entities based on membership values, completing 

semantic fuzzification. Then, the weight allocation 

of the attributes of the fault chain is carried out 

through the multiplication analysis method. It 

constructs a judgment matrix based on the fault chain 

decision attribute tree, and then uses the set 

averaging method to calculate the attribute weights, 

as shown in equation (7). 

𝑤𝑖 =
[∏ (𝑝𝑖𝑗/∑ 𝑝𝑖𝑗

𝑛
𝑗=1 )𝑛

𝑗=1 ]

1
𝑛

∑ [∏ (𝑝𝑖𝑗/∑ 𝑝𝑖𝑗
𝑛
𝑗=1 )𝑛

𝑗=1 ]

1
𝑛𝑛

𝑖=1

, 𝑖 = 1,2, . . . , 𝑛    (7) 

In equation (7), 𝑤𝑖  represents the weight vector. 

𝑝𝑖𝑗  represents the elements of the judgment matrix. 

It uses the consistency index to test the error situation 

of the judgment matrix, as shown in equation (8). 

𝐶𝐼 =
∑

[𝑃𝑊]𝑖
𝑛𝑤𝑖

−𝑛𝑛
𝑖=1

𝑛−1
                     (8) 

In equation (8), 𝐶𝐼  represents the calculated 

consistency index. 𝑃  represents the judgment 

matrix. 𝑊  represents the eigenvector of the 

judgment matrix. 𝑤𝑖  represents the 𝑖th value of 𝑊. 𝑛 

represents the order of the judgment matrix. After 

adjusting the matrix based on the error, a 

comprehensive evaluation calculation is carried out 

by approximating the ideal solution ranking method. 

It defines the attribute value matrix for a fault chain, 

as shown in equation (9). 

𝑌 = (𝑦𝑖𝑗)𝑚×𝑛                          (9) 

In equation (9), 𝑌 represents the attribute value 

matrix. 𝑦𝑖𝑗 represents the value of the 𝑗 -th decision 

attribute in a fault chain. Afterwards, the decision 

attributes are normalized and the cost attribute 

values are calculated as shown in equation (10). 

𝑧𝑖𝑗 = 1/𝑦𝑖𝑗                          (10) 

In equation (10), 𝑧𝑖𝑗  represents the cost type 

attribute. The calculation of intermediate attributes is 

shown in equation (11). 

𝑧𝑖𝑗1 = 1 −
𝑦𝑖𝑗−𝑦𝑏𝑒𝑠𝑡

𝑚𝑎𝑥{|𝑦𝑖𝑗−𝑦𝑏𝑒𝑠𝑡|}
          (11) 

In equation (11), 𝑧𝑖𝑗1 represents the intermediate 

type attribute. 𝑦𝑏𝑒𝑠𝑡  represents the median value. It 

normalizes each column attribute, calculates relative 

closeness, and calculates relative closeness through 

Euclidean distance. The calculation of Euclidean 

distance is shown in equation (12). 

{
 

 𝐷+ = √∑ 𝑤𝑖(𝑣𝑖𝑗 − 𝑣𝑗
+)

2𝑛
𝑗=1

𝐷− = √∑ 𝑤𝑖(𝑣𝑖𝑗 − 𝑣𝑗
−)

2𝑛
𝑗=1

           (12) 

In equation (12), 𝐷  represents the Euclidean 

distance. 𝑣  represents the ideal solution. The 

calculation of relative closeness is shown in equation 

(13). 

𝐶 =
𝐷−

𝐷++𝐷−
                     (13) 

In equation (13), 𝐶 represents relative closeness. 

When evaluating and analyzing, the closer the 

relative closeness is to 1, the higher the correctness 

of the analyzed fault chain. The complete process of 

fault detection for automated industrial equipment is 

shown in Figure 6. 

As shown in Figure 6, when conducting fault 

detection for automated industrial equipment, the 

first step is to trace the source of the fault node 

through a knowledge graph. After obtaining the fault 

chain, it performs attribute queries and selection. 

The attribute query obtains the decision attribute 

value, and after fuzzification, the semantic 

quantification value is obtained. The decision 

attribute system is obtained through attribute 

selection, and the weight vector is obtained through 

weight allocation. By combining decision attribute 

values, weight vectors, and semantic quantification 

values, a comprehensive evaluation is conducted to 

obtain the source fault node and complete automated 

industrial equipment fault detection. 

 

4. EFFECTIVENESS ANALYSIS OF FAULT 

DETECTION TECHNOLOGY BASED ON 

MULTI-ATTRIBUTE DECISION FUSION 

IN KNOWLEDGE GRAPH 

 

Intelligent fault detection technology is one of 

the important technologies in the development of 

automated industrial equipment. This section 

analyzes the effectiveness of the research and design 

of automated industrial equipment fault detection 

technology from two aspects: performance testing 

and application analysis. 
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Fig. 6. Fault detection process for automated industrial equipment 

 

4.1. Performance testing of fault detection 

technology based on multi-attribute decision 

fusion in knowledge graphs 

In order to test the performance of the automated 

industrial equipment fault detection technology 

designed for research, 2000 sets of knowledge 

triplets were selected, of which 60% were positive 

samples and 40% were negative samples. It is evenly 

divided into two test sets, each containing 1000 sets 

of knowledge triplets, called Alpha and Bravo, 

respectively. The abbreviated research method is the 

Fusion of Multiple Attributes (FMA) method. A test 

was conducted on a fault in Alpha, and the results are 

shown in Table 1. 

As shown in Table 1, FMA extracted 8 possible 

fault chains during fault testing. Among the 8 fault 

chains, the maximum positive ideal solution distance 

is the fault chain numbered 6, reaching 0.3679. The 

smallest positive ideal solution is the fault chain 

numbered 7, which is 0.1387. Among the 8 fault 

chains, the maximum negative ideal solution 

distance is the fault chain numbered 7, reaching 

0.3203. The smallest negative ideal solution is the 

fault chain with number 4, which is 0.1289. Through 

calculation, it was found that the fault chain with the 

highest relative closeness among the 8 fault chains is 

numbered 7, which reaches 0.6981. The fault chain 

with representative number 7 is the detected fault. 

This indicates that the research method can smoothly 

carry out fault detection of automated industrial 

equipment. It tests the average accuracy and 

compares it with Knowledge Graph Relationship 

Decision Making (KGRDM) and Fuzzy Entity 

Semantic Decision making (FESD), as shown in 

Figure 7. 

As shown in Figure 7, the average accuracy of 

different methods decreases as the number of 

traceability fault chains increases. As shown in 

Figure 7 (a), in the Alpha dataset, the average 

accuracy of KGRDM decreases to 0.6091 when the 

number of traceability  fault  chains  reaches  17-18. 
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Fig. 7. Average precision mean 

 
Table 1. Fault testing 

Fault chain 

number 

Positive ideal solution 

distance 

Negative ideal 

solution distance 
Relative closeness 

Fault chain correctness 

ranking 

1 0.3041 0.2222 0.4221 4 

2 0.3209 0.1911 0.3730 6 

3 0.1955 0.2975 0.6032 2 

4 0.3081 0.1289 0.2961 7 

5 0.2633 0.2137 0.4479 3 

6 0.3679 0.1411 0.2772 8 

7 0.1387 0.3203 0.6981 1 

8 0.2811 0.1711 0.3791 5 
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The average accuracy of FMA is 0.9356 when 

the number of traceability fault chains is 1-3. When 

tracing the number of faulty chains from 17 to 18, it 

dropped to 0.8046. As shown in Figure 7 (b), in the 

Bravo dataset, the average accuracy of FESD 

decreases to 0.6913 when the number of traceability 

fault chains reaches 17-18. The average accuracy of 

FMA is 0.9703 when the number of traceability fault 

chains is 1-3. When tracing the number of faulty 

chains from 17 to 18, it dropped to 0.8216. This 

indicates that the research method has better 

detection accuracy for positive ideal solutions. Its 

test normalized cumulative gain of loss is shown in 

Figure 8. 
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Fig. 8. Normalized cumulative loss gain 

 

As shown in Figure 8, the cumulative gain of 

normalized loss for different methods decreases as 

the number of fault chains traced increases. As 

shown in Figure 8 (a), in the Alpha dataset, the 

normalized cumulative loss gain of FESD decreases 

to 0.6421 when the number of traceability fault 

chains reaches 17-18. The normalized cumulative 

loss gain of FMA is 0.9429 when the number of 

traceability fault chains is 1-3. When tracing the 

number of faulty chains from 17 to 18, it drops to 

0.8104. As shown in Figure 8 (b), in the Bravo 

dataset, the normalized cumulative loss gain of 

KGRDM decreases to 0.2721 when the number of 

traceability fault chains reaches 17-18. The 

normalized cumulative loss gain of FMA is 0.9274 

when the number of traceability fault chains is 1-3. 

When tracing the number of faulty chains from 17 to 

18, it dropped to 0.7635. The research method can 

achieve more accurate fault chain sorting. 

 

4.2. Application analysis of fault detection 

technology based on multi-attribute decision 

fusion in knowledge graph 

In order to further determine the practical 

feasibility of the fault detection technology designed 

in the study, the practical application of the research 

method is studied under actual industrial conditions. 

In order to ensure the consistency of other conditions 

during testing as much as possible, the actual 

industrial application scenario is two automated 

industrial equipment on a precision stamping parts 

production line. One of the two automatic industrial 

equipment is an 8-station robotic arm swing robot, 

the main working parts are servo motor, cylinder, 

optical fiber probe. The other is a 4-station cutting 

machine, the main working parts are cylinder, 

pressure sensor, position sensor, stepper motor. It 

analyzes the time and accuracy of fault detection in 

the swinging robot, as shown in Figure 9. 

 

 

 

 

 

 

Fig. 9. Fault detection effect of swinging 

robot 
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Figure 9 shows that different methods have 

similar trends in the effectiveness of fault detection 

for the oscillating disc robot. As shown in Figure 9 

(a), when conducting detection time analysis, the 

three methods all take around 33ms when involving 

2 faulty nodes. When the number of faulty nodes 

increases to 12, the time consumption of FESD 

increases to 88ms, KGRDM increases to 91ms, and 

FMA increases to 72ms. As shown in Figure 9 (b), 

in the analysis of detection accuracy, the detection 

accuracy of FESD decreases to 89.1% when the 

number of fault types involved increases to 5. The 

detection accuracy of KGRDM decreases to 86.6%. 

The detection accuracy of FMA is 99.3% when the 

number of fault types involved is 1. When the 

number of fault types involved increases to 5, it is 

94.1%. It analyzes the time and accuracy of fault 

detection in the cutting machine, as shown in Figure 

10. 

 

 

Fig. 10. Cutting machine fault detection effect 

 

As shown in Figure 10, different methods also 

exhibit similar trends in the effectiveness of fault 

detection for cutting machines. As shown in Figure 

10 (a), when conducting detection time analysis, the 

three methods all take less than 25ms when 

involving 2 faulty nodes. When the number of faulty 

nodes increases to 12, the time consumption of 

FESD increases to 37ms, KGRDM increases to 

41ms, and FMA increases to 28ms. As shown in 

Figure 10 (b), in the analysis of detection accuracy, 

the detection accuracy of FESD decreases to 94.8% 

when the number of fault types involved increases to 

5. The detection accuracy of KGRDM decreases to 

95.6%. The detection accuracy of FMA is 99.4% 

when the number of fault types involved is 1. When 

the number of fault types involved increases to 5, it 

is 97.9%. The research method is more efficient and 

accurate in fault detection. Based on the fault 

detection results of 50 hours, the equipment is 

improved and the failure rate of the improved 

equipment is analyzed, as shown in Figure 11. 
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Fig. 11. Machine failure rate after 

maintenance 

As shown in Figure 11, different methods 

effectively improve the machine's failure rate. Figure 

11 (a) shows that the component with the most 

significant improvement effect of FESD in the 

pendulum robot is the cylinder, which reduces the 

failure rate from 3.2% to 1.5%. The component with 

the most significant improvement effect of KGRDM 

is the fiber optic probe, which reduces the failure rate 

from 3.2% to 1.7%. FMA reduces the failure rate of 

fiber optic probes from 3.2% to 0.8%. Reduce the 

cylinder failure rate from 3.2% to 0.7%. Figure 11 

(b) shows that the component with the most 

significant improvement effect of FESD in the 

cutting machine is the stepper motor, which reduces 

the failure rate from 5.0% to 2.3%. The component 

with the most significant improvement effect of 

KGRDM is also the stepper motor, which reduces 

the failure rate from 5.0% to 3.0%. FMA reduces the 

cylinder failure rate from 3.5% to 0.8% and the 

stepper motor failure rate from 5.0% to 1.2%. The 

research method can provide better assistance for the 

maintenance of automation industrial equipment. In 

order to more clearly summarize the performance of 

the research method, the research results from Figure 

7 to Figure 11 are presented in a Table, as shown in 

Table 2. 
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Table 2. Comprehensive analysis of results 

Average precision mean 

Number of traceability fault chains 1-3 17-18 

Alpha 0.9356 0.8046 

Bravo 0.9703 0.8216 

Normalized cumulative loss gain 

Number of traceability fault chains 1-3 17-18 

Alpha 0.9429 0.8104 

Bravo 0.9274 0.7635 

Fault detection effect of swinging robot 

Number of faulty nodes involved 2 12 

Time consuming (ms) 33 72 

Number of fault types involved 1 5 

Accuracy (%) 99.3 94.1 

Cutting machine fault detection effect 

Number of faulty nodes involved 2 12 

Time consuming (ms) 25 28 

Number of fault types involved 1 5 

Accuracy (%) 99.4 97.9 

Machine failure rate after maintenance 

swinging robot 0.8% 

Cutting machine 1.2% 

 

As can be seen from Table 2, the research method 

has shown good performance in terms of Average 

precision mean and Normalized cumulative loss 

gain. In practical application, the research method 

completes the automatic equipment fault detection 

with high accuracy and high efficiency, which 

proves the effectiveness of the research method. 

 

5. CONCLUSION 

 

There are a large number of automated industrial 

equipment running in modern factories, which also 

generate a large amount of system data during 

operation. A fault detection method based on multi-

attribute decision fusion in a knowledge graph was 

studied and designed to obtain fault information of 

automated industrial equipment from system data. 

During the process, six types of entities were used to 

construct the chain of fault occurrence. A 

Transformer based bidirectional encoding model 

was used for knowledge extraction from 

unstructured text. The knowledge set was updated 

through sentence vectors. Then, a system 

information query code was designed and a fault 

tracing path structure was established. The source 

fault node was determined by relative closeness, and 

the effectiveness of the research method was 

analyzed. The experimental results showed that the 

research method successfully extracted 8 possible 

fault chains in fault detection and calculated the 

corresponding relative closeness. In the 

normalization loss cumulative gain test, the research 

method maintained a value of 0.7635 or above when 

the number of traceability fault chains was 17-18. 

When conducting actual operation on a 4-station 

cutting machine, the research method achieved an 

accuracy of 97.9% when the number of fault types 

involved increased to 5. The research method 

reduced the failure rate of the fiber optic probe of the 

8-station robotic arm swing disk robot from 3.2% to 

0.8%. The research method can complete automated 

industrial equipment fault detection at a faster speed, 

and can better guide technical personnel in 

equipment improvement based on the detection 

results. Current methods have shown good 

performance in dealing with small scale automated 

industrial equipment, but in the face of very large 

and complex industrial systems, how to ensure the 

construction and update efficiency of knowledge 

graph, and how to optimize the query and analysis 

process to meet the needs of large data volumes, is a 

problem that needs further research. With the 

expansion of system scale, the balance between real-

time requirements and computing resources 

becomes a challenge. Future research is needed to 

explore more efficient algorithms and optimization 

strategies to ensure fast and accurate fault detection 

in resource-limited situations. 
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