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Abstract 

Traction drives with vector control are widely used on mainline locomotives with induction motors. 

Traction motors can fail due to malfunctions that occur during the operation of locomotives. Real-time 

functional diagnostic systems are necessary to prevent the failure of traction motors. The implementation of 

such systems will allow to detect the occurrence of malfunctions in the traction motor at the initial stage and 

prevent the further development of the defect.  In the work, a structural diagram of functional diagnostics for 

monitoring the condition of the rotor of an induction motor is proposed and an algorithm for its operation is 

developed. 
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1. INTRODUCTION 

  

The railway belongs to the objects of critical 

infrastructure. Rolling stock is an element of critical 

infrastructure. Increasing the efficiency of operation 

of critical infrastructure facilities is always an urgent 

task [1-3]. 

The use of a diagnostic system [4] built into the 

traction drive of rolling stock is one of the ways to 
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increase the efficiency of its operation. Such systems 

were called operational diagnostic systems. 

On railway rolling stock, the traction drive 

system suffers the most damage [5]. Traction motors 

are the most damaged elements of the traction drive 

system [6, 7]. 

The rotor of an induction motor (IM) is one of its 

most damaged elements, as evidenced by the 

analysis of the data given in [8-10]. Statistics of 

induction motor failures are given in [10] (Fig. 1). 

 
Fig. 1. Results of the analysis of the causes of emergency failures of induction motors with a squirrel-cage 

rotor 
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From Fig. 1 it follows that a significant number 

of asynchronous motor failures are due to rotor 

failures (about 8%). 

A large number of studies are devoted to the 

diagnosis of the condition of the rotor of an IM. 

Diagnosing the condition of the rotor based on 

the spectral analysis of the stator currents of an IM is 

proposed in works [11-13]. Works [14-16] are 

devoted to diagnosing the condition of the rotor 

based on the analysis of magnetic flux harmonics. To 

solve the problem of monitoring the rotor state, 

methods of vibration diagnostics are proposed in 

works [17-19]. 

The listed methods will be effective when 

building a bench diagnostic system. When building 

a system of functional diagnostics, they will be 

ineffective. This is caused by the following factors: 

- torque pulsations and imbalance of phase currents 

of an IM are a consequence of the asymmetry of 

its windings [20];  

- the asymmetry of the stator phase voltages leads to 

the same consequences [21]. 

Autonomous voltage inverters are used to 

organize the system of phase voltages of the stator of 

an IM. The implementation of the pulse width 

modulation (PWM) algorithm is the basis of the 

operation of autonomous voltage inverters. 

Therefore, the spectra of the stator phase currents 

contain higher harmonics. The presence of higher 

harmonics in the spectra of the stator phase currents 

of an IM is due to the non-sinusoidal nature of the 

phase voltages of the stator as well. 

That is, the use of the methods proposed in 

studies [11-13] and [14-16] in the construction of 

diagnostic systems will be effective when the phase 

voltages of the stator of an IM are symmetrical and 

sinusoidal. During the operation of railway rolling 

stock, there is a constant change in its modes of 

operation. Changing operating modes causes 

constant unstable modes in the traction drive of the 

rolling stock. In turn, unstable modes determine the 

presence of quasi-asymmetric modes of the system 

of phase voltages of the stator of an IM. That is why 

it is impossible to ensure symmetry and sinusoidal 

phase voltages of the stator of an IM [22]. 

In [23], a method of analysing stator currents is 

proposed, the use of which will allow developing a 

system for diagnosing the condition of the rotor of 

an IM during the operation of the rolling stock. The 

Park vector is used to diagnose the condition of an 

IM rotor in this research. 

But the work [23] does not take into account the 

fact that the dynamic characteristics of the rolling 

stock work depend on its modes [24-26]. That is, a 

constant change in the traction motor load. 

The article [27] is devoted to the research of the 

condition of the windings of an IM with a constant 

load change. But in it, the authors proposed only an 

algorithm without technical solutions. 

The use of vibration methods for operational 

diagnosis of the condition of the rotor of an IM is 

also ineffective. The largest torque pulsations in the 

presence of asymmetry in the windings of an IM will 

be in the idling mode [20]. In the traction drive of 

railway rolling stock, the traction motors are always 

under load. In addition, for the application of 

vibration diagnostics methods, it is necessary to have 

a priori information about the vibration spectrum of 

an IM [28]. The listed factors make it difficult to use 

vibration methods to build an operational diagnostic 

system for monitoring the condition of the windings 

of an IM. 

Control of the value of the angular speed of 

rotation of the shaft of an IM can be another 

approach in the development of a system for 

diagnosing the condition of the rotor [29-31]. This 

fact is possible because damage to the rotor causes 

an increase in power loss in it [32-34]. This will lead 

to increased slippage in the IM. 

IMs with a short-circuited rotor are most widely 

used in railway rolling stock. Systems with scalar 

control [35-37], vector control [38-40] and direct 

torque control [41-43] can be used to control IMs. 

The organization of the traction drive system should 

also be taken into account when developing a system 

for operational diagnostics of the condition of the 

rotor of an IM. 

The vector control system is the most effective 

for mainline rolling stock [38]. The vector control 

system includes a flux linkage observer unit. The 

induction motor slip is calculated in this unit. That 

is, when building a system for operational diagnosis 

of the condition of the rotor of an IM and the basis 

of slip control in the vector control system, it is 

necessary to make minor structural changes in the 

schematic diagram. 

The relevance of the study is caused by the need 

to detect defects in the rotor windings at an early 

stage, taking into account the operating states and the 

need to turn off the traction motor when the rotor is 

damaged. This circumstance is important due to the 

fact that rotor malfunctions will lead to damage to 

other elements of the induction motor and, as a 

result, to an increase in the cost of repairs, and even 

to a complete replacement of the motor. 

 

2. THE AIM AND OBJECTIVES OF 

RESEARCH 

 

The aim of the research is to develop a system for 

functional diagnostics of the condition of the rotor of 

an IM in the traction drive of railway rolling stock. 

The following tasks were solved to achieve the 

set aim: 

- the existing methods of monitoring the condition of 

the rotor were analysed. It is proposed to use the 

amount of slip as a diagnostic parameter for 

monitoring the condition of the rotor; 

- a structural diagram for diagnosing the condition of 

the rotor was developed; 

- a structural diagram of the unit for diagnosing the 

condition of the rotor was developed; 
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- it is proposed to supplement the basic scheme of 

vector control of IMs with a unit for diagnosing the 

condition of the rotor; 

- obtained dependences of rotor slip on the angular 

frequency of the motor shaft rotation for cases of 

an undamaged rotor and for different degrees of 

rotor damage; 

- the operation algorithm of the rotor condition 

diagnostics unit was proposed on the basis of the 

obtained dependences of the rotor slip on the 

frequency of rotation of the shaft of an IM. 

 

3. THE OBJECT OF RESEARCH AND ITS 

MAIN PARAMETERS 

 

The traction drive of the DS-3 series electric 

locomotive (Ukraine) with a vector control system 

for IMs was chosen as the research object [38]. 

The simulation model of the traction drive 

system of the DS-3 series electric locomotive is 

given in the research [38]. It is implemented in the 

MATLab software environment. Therefore, it is 

inappropriate to present its diagram in this research. 

DS-3 electric locomotives are equipped with IMs 

from the STA-1200 series. Table 1 presents their 

parameters [44]. 

There are many approaches to modeling three-

phase induction motors. This is a model in two-phase 

stationary coordinates (αβ coordinates) [45-47], in 

two-phase moving coordinates directed along the 

rotor field (dq coordinates) [48-50], three-phase 

stationary coordinates [51-53] and others. 

 
Table 1. Main parameters of the IM STA-1200 series 

Parameter Unit Value 

Power P kW 1200 

The effective value of the 

line voltage Ul 

V 
1870 

The actual value of the stator 

phase current Is 

A 
450 

Nominal frequency of the 

supply voltage fnom 

Hz 
55.8 

Number of phases m number 3 

Number of pole pairs p number 3 

Nominal rotation frequency rpm 1110 

Torque, T N·m 10700 

Efficiency η % 95.5 

Power factor cosφ r. u. 0.88 

Active resistance of the stator 

winding rs 

Ω 
0.0226 

Active resistance of the rotor 

windings brought to the stator 

winding rʹr 

Ω 

0.0261 

Dissipation inductance of the 

stator winding Ls 

mH 
0.65 

Dissipation inductance of the 

rotor winding brought to the 

stator winding Lʹr 

mH 

0.45 

Total inductance of the 

magnetization circuit Lμ 

mH 
19.4336 

Moment of inertia J kg·m2 39 

Each of the models has its advantages and 

disadvantages. They can be effective for solving one 

problem and unsuitable for solving another problem. 

On models made in two-phase coordinates [45-47] 

and [48-50], it is difficult to organize the asymmetry 

of the windings of an IM. But these works do not 

provide an algorithm for implementing the 

asymmetry of the windings of an IM. In works [44, 

54], based on the methodology proposed in work 

[55], an algorithm for implementing the asymmetry 

of the windings of an IM is given. 

Therefore, for further research, a simulation 

model of an IM was chosen, which is given in the 

paper [44]. The diagram of the simulation model of 

an IM, which is implemented in the MATLab 

software environment, is given in the work [44]. 

Therefore, it is inappropriate to mention it in this 

work. 

 

4. DEVELOPMENT OF THE ROTOR 

CONDITION DIAGNOSTIC UNIT AS PART 

OF THE VECTOR CONTROL SYSTEM OF 

AN IM 

 

In the basic vector control system, the rotor slip 

is calculated in the "Rotor flux linkage observer" 

block based on the values of the stator phase currents 

and the value of the angular frequency of rotation of 

the motor shaft [56-58]. Therefore, additional input 

signals are unnecessary for the organization of the 

"Unit for diagnosing the condition of the rotor". To 

display information about the state of the rotor, the 

"Indication unit" should be used. Then the vector 

control scheme with the system of functional 

diagnosis of the condition of the rotor windings takes 

the form shown in Fig. 2. 

The IM receives power from the inverter (Fig. 2). 

This leads to the appearance of higher harmonics in 

the spectra of the stator phase currents. Taking into 

account the fact that in traction drive systems, the 

sampling frequency in the organization of PWM is 

limited to 1 kHz [38], the amplitudes of the higher 

harmonics of the phase currents are quite significant. 

This causes the occurrence of torque pulsations, 

which lead to pulsations of the motor shaft rotation 

frequency and, as a result, to rotor slip pulsations 

[38]. The asymmetry of the rotor windings also 

causes torque pulsations [59-61]. In other words, 

both the power system based on the autonomous 

voltage inverter and damage to the rotor lead to the 

appearance of slip pulsations. This circumstance 

makes it difficult to diagnose the condition of the 

rotor windings by the values of the stator phase 

currents. Therefore, it is proposed to diagnose the 

condition of the rotor by the first harmonics of the 

stator phase currents. For this purpose, the "Unit for 

diagnosing the condition of the rotor" uses the "Fast 

Fourier transform unit" (Fig. 3). 
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Operating modes of rolling stock constantly 

change during operation. In this regard, unstable 

modes are present in the traction drive system for a 

considerable time. This fact can lead to errors during 

diagnosis. To determine the stable mode of operation 

of the traction drive system, the "Unit for 

determination of stable mode" is used in the "Unit 

for diagnosing the condition of the rotor " (Fig. 3), 

the signal from which turns on the "Fast Fourier 

transform unit". The first harmonics of the stator 

phase currents from the "Fast Fourier transform unit" 

are sent to the "Converter from abc coordinates to αβ 

coordinates". The stator phase currents in αβ 

coordinates from the "Converter from abc 

coordinates to αβ coordinates" unit are sent to the 

"Converter from αβ coordinates to xy coordinates". 

The stator phase currents in xy coordinates are 

formed at the output "Converter from αβ coordinates 

to xy coordinates". 

In the "Rotor slip calculation unit" the value of 

rotor slip is calculated according to the formula [59] 

s =
𝑟𝑟 ∙ 𝑘𝑟
|𝜓𝑟𝑥|

∙ 𝑖𝑠𝑦
∗ , (1) 

where |ψrx| - flux linkage module of the rotor along 

the x coordinate, r. u.; 

kr - rotor circuit coefficient, r. u.; 

rr - rotor chain resistance, r. u.; 
*

syi  - value of the stator current according to the y 

coordinate, r. u. 

The flux linkage module of the rotor along the x 

coordinate is determined by the formula [59] 

|𝜓𝑟𝑥| =
𝑙𝜇 ∙ 𝑘𝑟

𝑇𝑟
𝛺𝑏

∙ 𝑝 + 1
∙ 𝑖𝑠𝑥

∗ , 
(2) 

where lμ - inductance of the magnetic circuit, r. u.; 

Tr - time constant of the rotor circuit, r. u.; 

Ωb - basic value of the angular frequency of phase 

voltages of the stator, s-1; 
*

sxi  - value of the stator current according to the x 

coordinate, r. u.; 

p - Laplace operator. 

 
Fig. 2. Structural diagram of the vector control system with a unit for diagnosing the condition of the rotor of an 

IM 

 
Fig. 3. Structural diagram of the unit for diagnosing the condition of the rotor 
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The basic value of angular frequency of phase 

voltages of the stator is determined by the formula 

[38] 

𝛺𝑏 = 2 ∙ 𝜋 ∙ 𝑓𝑛𝑜𝑚 = 360.6, 𝑠−1, (3) 

where fnom=55.8 - the nominal frequency of the phase 

voltages of the stator (Table 1), Hz. 

Magnetic circuit inductance in relative units [38] 

𝑙𝜇 =
𝛺𝑏 ∙ 𝐿𝜇

𝑍𝑏
= 2.839, 𝑟. 𝑢., (4) 

where Lμ=19.4336 - the inductance of the magnetic 

circuit (table 1), mH; 

Zb - basic resistance value, Ω [38]: 

𝑍𝑏 =
𝑈𝑓𝑛𝑜𝑚

𝐼𝑓𝑛𝑜𝑚
=

𝑈𝑙𝑛𝑜𝑚

√3 ∙ 𝐼𝑓𝑛𝑜𝑚
= 2.4, 𝛺, (5) 

where Ulnom=1870 - effective value of the line 

voltage (Table 1), V; 

Ifnom=450 - effective value of the phase current (table 

1), A. 

The time constant of the rotor circuit is 

determined in accordance with the expression [38] 

𝑇𝑟 =
𝑙𝜇 + 𝑙𝑟𝜎

𝑟𝑟
= 276.32, 𝑟. 𝑢., (6) 

where lrσ - dissipation inductance of the rotor 

winding is in relative units [38]: 

𝑙𝑟𝜎 =
𝛺𝑏 ∙ 𝐿𝑟𝜎

𝑍𝑏
= 0.066, 𝑟. 𝑢., (7) 

where Lrσ=0.45 - dissipation inductance of the rotor 

winding, reduced to the stator winding (Table 1), 

mH. 

Rotor circuit resistance in relative units [38]: 

𝑟𝑟 =
𝑅𝑟
′

𝑍𝑏
= 0.010875, 𝑟. 𝑢., (8) 

where R'r=0.0261 - resistance of the rotor circuit of 

the rotor winding, reduced to the stator winding 

(Table 1), Ω. 

Rotor circuit coefficient [38] 

𝑘𝑟 =
𝑙𝜇

𝑙𝜇 + 𝑙𝑟𝜎
= 0.9773, 𝑟. 𝑢., (9) 

Since when determining the rotor slip for the 

basic scheme there were slip pulsations caused by 

the reasons discussed above, for this case the average 

value of the slip was determined: 

𝑠𝑟_𝑎𝑣 =
𝑠𝑟𝑚𝑎𝑥 + 𝑠𝑟𝑚𝑖𝑛

2
, (10) 

where srmax - the maximum value of rotor slip, 

relative units; 

srmin - the minimum rotor slip value, relative units. 

The slip of the IM rotor is determined according 

to the equation 

𝑠𝑟 =
𝜔𝑟𝑠𝑦𝑛𝑐ℎ𝑟 − 𝜔𝑟𝑎𝑠𝑦𝑛𝑐ℎ𝑟

𝜔𝑟𝑠𝑦𝑛𝑐ℎ𝑟

, (11) 

where ωrsynchr – synchronous angular frequency of 

rotation of the rotor, rag/s; 

ωrasynchr - asynchronous angular frequency of 

rotation of the rotor, rag/s. 

Dependencies of the rotor slip of the IM and the 

slip calculated in the "Rotor slip calculation unit" 

(Fig. 3) on the electrical angular frequency of 

rotation of the rotor are obtained as a result of 

simulation. 

For both cases, the simulation was performed for 

the following supply voltage frequencies: 

1. At a frequency f=0.9·fnom; 

2. At a frequency f=0.95·fnom; 

3. At nominal frequency; 

4. At a frequency f=1.05·fnom; 

5. At a frequency f=1.1·fnom; 

The results of modeling and calculations are 

listed in Table 2. 

 
Table 2. Results of determination of rotor slip as a function 

of engine shaft rotation frequency with an intact rotor 

Frequency 

of stator 

phase 

voltages f, 

Hz 

Experiment 

Electric 

angular 

frequency 

of rotation 

of the 

rotor ωr1, 

rag/s 

Slip s1, 

r. u. 

Electric 

angular 

frequency 

of rotation 

of the 

rotor ωr, 

rag/s 

Slip s, 

r. u. 

50.22 313.755 0.005656 313.832 0.005412 

53.01 331.192 0.005638 331.273 0.005394 

55.8 348.630 0.00562 348.715 0.005376 

58.59 366.068 0.005601 366.160 0.005357 

61.38 383.507 0.005582 383.602 0.005338 

 

The dependences of AD rotor slip (s1=f(ω1)) and 

slip calculated in the "Rotor Slip Calculation Block" 

(s=f(ω)) on the electrical angular frequency of the 

stator phase voltages (Fig. 4) are obtained according 

to the results of Table. 2. 

As can be seen from Fig. 4, at the same electrical 

angular frequencies of the phase voltages of the 

stator, the slip of the IM has a greater value than that 

calculated in the "Rotor slip calculation unit". This is 

explained by the effect of higher harmonics of the 

stator phase currents on losses in the IM, and 

therefore on slip. 

Since the dependences of the slip on the electric 

angular frequency of the stator phase voltages are 

linear, for the proposed scheme their analytical 

expression will have the form 

𝑠𝑟 = 1 −
𝑠𝑟(53.01) − 𝑠𝑟(55.8)

𝜔𝑟(55.8) −𝜔𝑟(53.01)
∙ 𝜔𝑟 = 

= 1.032 ∙ 10−6 ∙ 𝜔𝑟 , 

(12) 
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Fig. 4. Dependencies of the rotor slip of the 

IM (s1=f(ω1)) and the slip calculated in the 

"Rotor slip calculation unit" (s=f(ω)) on the 

electric angular frequency of rotation of the 

rotor 

 

where sr(53.01)=0.005394 - slip corresponding to the 

frequency of the stator phase voltages of 53.01 Hz 

(Table 2), r. u; 

sr(55.8)=0.005376 - slip corresponding to the nominal 

frequency of the stator phase voltages of 55.8 Hz 

(Table 2), r. u.; 

ωr(55.8)=348.715 - electric angular frequency of phase 

voltages of the stator, which corresponds to the 

nominal frequency of 55.8 Hz (Table 2), rps; 

ωr(53.01)=331.273 - electric angular frequency of 

phase voltages of the stator, which corresponds to 

the nominal frequency of 53.01 Hz (Table 2), rps. 

In accordance with expression (11), the value of 

slip for an undamaged rotor is calculated in the "Unit 

for determining the presence of rotor damage", 

which is compared with the value calculated in the 

"rotor slip calculation unit". If the slip values 

calculated in the "Unit for determining the presence 

of rotor damage" and in the "Rotor slip calculation 

unit" match, the "Indication Unit" receives a signal 

of the absence of damage in the rotor, if they differ, 

the "Indication Unit" receives a signal of the 

presence of damage in the rotor. 

 

5. DEVELOPMENT OF THE FUNCTIONING 

ALGORITHM OF THE UNIT FOR 

DIAGNOSTIC STATE OF THE ROTOR 

 

The operation of the "Rotor condition diagnostic 

unit" is based on the algorithm for determining the 

presence of damage in the rotor of an IM. For its 

development, it is necessary to establish the 

dependence of slip on the electrical angular 

frequency of rotation at different degrees of damage 

to the rotor. It is also necessary to determine the 

accuracy with which the rotor slip should be 

calculated and the limits of deviation of the slip 

values calculated in the "Unit for determining the 

presence of rotor damage" and in the "Rotor slip 

calculation unit". 

Four experiments were conducted to answer the 

question about the dependence of the rotor slip on 

the electrical angular frequency of rotation in the 

presence of damage in the rotor. 

For the supply voltage frequency values used in 

the previous experiments, the results of the following 

experiments were recorded on the simulation model 

implemented for the case of the proposed scheme: 

1. one rotor rod is damaged; 

2. two rotor rods are damaged; 

3. three rotor rods are damaged; 

4. four rotor rods are damaged. 

Since slip pulsations are present when the rotor 

is damaged, the average values of rotor slip were 

calculated using formula (10). The results are listed 

in Table 3. 

According to the results of Table 3, graphs of the 

dependence of the rotor slip on the angular speed of 

the motor shaft rotation in the presence of damage to 

the rotor windings for different degrees of damage 

are plotted (Fig. 5). 

As can be seen from Fig. 5, the dependences of 

the rotor slip on the electrical angular speed of 

rotation in the presence of rotor damage for different 

degrees of damage are also linear. Moreover, with an 

increase in the degree of damage, at the same 

frequency of phase voltages of the stator, the slip 

increases. 

Slip values are calculated in the "Unit for 

determining the presence of rotor damage" and in the 

"Rotor slip calculation unit". The slip values 

obtained are compared. In the event that the value 

calculated in the "Rotor slip calculation unit" is 

greater than the value calculated in the "Unit for 

determining the presence of rotor damage", the Ds 

signal equal to 1 is sent to the "Indication Unit". This 

fact indicates the presence of damage in the rotor. 

Otherwise, a Ds signal equal to 0 is sent to the 

"Indication Unit". This fact indicates the absence of 

damage in the rotor. 

 

Fig. 5. Dependencies of slip on the electric angular 

frequency of rotation for different degrees of rotor 

damage: s2 – one rod is damaged; s3 – two rods are 

damaged; s4 – three rods are damaged; s5 –damaged 

four rods are damaged 
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Taking into account the description of the 

operation of the structural diagram of the "Rotor slip 

calculation unit" and the above-mentioned nature of 

the change in the dependence of the rotor slip on the 

angular speed of rotation of the motor shaft in the 

presence of damage to the rotor windings, the 

operation algorithm of the "Rotor slip calculation 

unit" can be depicted as shown in Fig. 6. 

The calculation of the difference limits of the 

values of rotor slip, calculated in the "Unit for 

determining the presence damage to the rotor 

windings" and "Rotor slip calculation unit" was 

carried out based on the following considerations. As 

can be seen from fig. 6, the dependences of the rotor 

slip on the angular speed of rotation of the motor 

shaft in the presence of damage and the absence of 

rotor windings are almost parallel. In addition, the 

smallest difference with the dependence of the rotor 

slip on the angular speed of rotation of the motor 

shaft in the absence of damage to the rotor windings 

has the specified characteristic for the case of 

damage to one rotor rod. 

Then the difference of these characteristics for 

the same value of the supply voltage frequency will 

be equal 

𝛥𝑠𝑟 = 𝑠𝑟1(55.8) − 𝑠𝑟(55.8) = 0.00002, 𝑟. 𝑢., (13) 

where sr1(55.8)=0.005396 - slip at the nominal 

frequency of the stator phase voltages voltage for the 

case of damage to one rotor rod, r. u.; 

sr(55.8)=0.005376 - slip at the nominal frequency 

of the phase voltages of the stator in the absence of 

damage to the rotor, r. u. 

The accuracy of the slip determination is chosen 

equal to half the difference between the values 

calculated in the "Unit for determining the presence 

of rotor damage" and in the "Rotor slip calculation 

unit", i. e. dsr=Δsr/2=0.00001. As can be seen from 

Table 6, the slip values are determined with accuracy 

up to the sixth digit. In other words, the sliding 

accuracy during the experiments was equal to 
610

rs

− = . 

Start

Entering values Isa, 

Isb, Isc, ωr

ωr(i)=ωr(i+1)?

yes

no

Transformation abc αβ

Transformation αβ xy

Determination of the amplitudes of the first 

harmonic component currents Isx and Isy 

Calculation of rotor slip sr (Eq.1)

Calculation of the average value 

of rotor slip sr_av (Eq.10)

Calculation of rotor slip for a given angular 

velocity in the absence of damage sr_norm (Eq.11)

sr_av=sr_norm± dsr?
yes no

Ds=0 Ds=0

Display output
 

Fig. 6. Algorithm of "Rotor slip calculation 

unit" operation 

Table 3. Results of determination of rotor slip as a function of engine shaft rotation frequency with a damaged rotor 

Frequency of 

stator phase 

voltages f, Hz 

Experiment 

one rotor rod is damaged two rotor rod is damaged three rotor rod is damaged 
four rotor rod is 

damaged 

Electric 

angular 

frequency of 

rotation of the 

rotor ωr2, rps 

Slip s2, 

r. u. 

Electric 

angular 

frequency of 

rotation of the 

rotor ωr3, rps 

Slip s3, 

r. u. 

Electric 

angular 

frequency of 

rotation of the 

rotor ωr4, rps 

Slip s4, 

r. u. 

Electric 

angular 

frequency of 

rotation of the 

rotor ωr5, rps 

Slip s5, 

r. u. 

50.22 313.827 0.005428 313.821 0.005447 313.814 0.005471 313.802 0.005507 

53.01 331.268 0.005411 331.261 0.005431 331.253 0.005455 331.241 0.005491 

55.8 345.682 0.005396 348.702 0.005414 348.693 0.005438 348.681 0.005474 

58.59 366.151 0.005376 366.144 0.005396 366.135 0.00542 366.121 0.005456 

61.38 383.594 0.005357 383.587 0.005374 383.577 0.0054 383.564 0.005436 
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It should be noted that the research was 

conducted for the case when a P-regulator, i. e. a 

proportional regulator, was used as a speed regulator 

in the vector control system. In some vector control 

systems, a PI controller is used as a speed controller. 

It is necessary to conduct additional studies to obtain 

the dependence of sliding on the electrical angular 

speed of rotation in the presence and absence of rotor 

damage in order to obtain correct results in this case. 

In the case when the nature of the specified 

dependencies differs from the linear one, the 

resulting dependencies should be approximated. 

All other steps of the proposed algorithm remain 

the same. 

 

6. CONCLUSION 

 

In this study, a system of functional diagnosis of 

the condition of the rotor windings of an IM in the 

traction drive system of the electric rolling stock of 

railways was developed. 

As a result of the analysis of scientific studies 

devoted to the diagnosis of induction motors, it was 

established that the use of the rotor slip value can be 

effective as a diagnostic feature in diagnosing the 

condition of the rotor windings. This made it 

possible to add to the structural diagram of the vector 

control system a block for diagnosing the condition 

of the IM rotor, the operation of which is based on 

the analysis of the rotor slip value. 

As a result of the simulation, the dependences of 

the IM rotor slip and the slip calculated in the "Rotor 

slip calculation unit" on the electrical angular 

frequency of rotation of the rotor were obtained. 

From the analysis of the obtained dependencies, it 

follows that the error of the slip calculation in the 

"Rotor slip calculation unit" does not exceed 4.5%, 

which will allow obtaining the slip value with high 

accuracy and determining the presence of damage in 

the rotor windings with high reliability. 

Based on the obtained dependence of the slip 

calculated in the "Rotor slip calculation unit" on the 

electrical angular frequency of rotation of the rotor, 

the accuracy with which it is necessary to calculate 

the slip is determined. Its value was 10-6. 

As a result of the simulation, the dependence of 

the slip calculated in the "Rotor slip calculation unit" 

on the electrical angular frequency of rotation for 

different degrees of rotor damage was obtained. The 

analysis of the obtained dependences showed that 

with the same frequency of the stator supply 

voltages, the value of the rotor slip increases as the 

degree of damage to the rotor windings increases. In 

addition, the smallest deviation of the slip value 

when the rotor windings are damaged from the slip 

value when the windings are intact will be when one 

rotor rod is damaged. The value of the deviation for 

this case is equal to Δsr1=0.00002, which is much 

greater than the accuracy of determining the rotor 

slip (δs=10-6). This fact makes it possible to state 

with high probability the presence of damage in the 

windings of the IM rotor. 

The continuation of the research can be works 

devoted to the development of a comprehensive 

system for diagnosing the condition of traction drive 

elements of railway rolling stock. 
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