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Abstract 

This paper presents the possibility of using the dispersion entropy with a sliding window to assess the stability 

of machine operation. Attention was focused on the feasibility of using a sliding window and the assessment 

of the minimum length of the window that produces stable results. The answer to this question is open to all 

and depends on the complexity of the physics of the phenomenon. The research was carried out first for simple 

mechanical systems, then for non-linear systems, and then, in the final part of the research, attention was paid 

to the real signals describing the displacement of the pan in the bearing. These studies are important in 

determining the minimum window length to conclude the diagnosis of mechanical systems; the narrower the 

window, not only reduces the need for computing power but above all allows a faster response. 
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 1. INTRODUCTION 

 

Diagnostics, as a field of engineering science and 

practice, has its roots dating back to the early 

twentieth century, when industrial development 

required more advanced methods of managing and 

maintaining machinery and infrastructure. 

Diagnostics encompasses methods and techniques to 

identify, locate, and characterise faults or anomalies 

in technical systems, which is the key to ensuring 

their safety and operational efficiency [1]. 

The first systematic approaches to diagnostics 

date back to the 1930s when the growth of the 

aerospace and automotive industries necessitated the 

creation of methods to assess the condition of 

machinery. Initially, these were simple visual and 

manual techniques, which evolved into advanced 

measurement methods [2]. 

Diagnostics has found its way into virtually every 

field of technology - from automation to energy to 

medicine. In automation and robotics, it is used to 

monitor the condition of machines and prevent 

failures. In power engineering, it allows the 

continuity of the energy supply to be maintained 

through the early detection of faults in the network 

and components of the power plant. In medicine, 

diagnostics is about identifying diseases and 

assessing the health of patients, using a variety of 

imaging and biological analysis techniques [3, 4]. 
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Developments in technology, particularly in the 

area of sensors and measurement systems, have 

contributed significantly to advances in diagnostics. 

Methods such as thermography, ultrasound, 

vibration analysis, or techniques based on sensor 

data have become industry standards. Modern 

approaches such as big data analysis and machine 

learning are opening up new perspectives for 

automated real-time diagnostics [5]. 

The article [6] presents an overview of diagnostic 

methods that use genetic algorithms to analyse 

degradation processes in power units that work with 

renewable energy sources. The paper pays particular 

attention to the use of genetic algorithms for thermos 

fluid diagnostics of steam turbines, which are 

controlled by a central power system to stabilise 

renewable sources. Diagnostic procedures 

developed in the research facilitate the formation of 

a reverse model for the thermal power plant. This 

enables quick identification of general extremes by 

aligning simulated signals with indicators of 

degradation. 

Progress in diagnostics relies on the 

advancement of the miniaturisation of measurement 

devices, their seamless integration with the Internet 

of Things, and the enhancement of intelligent 

algorithms for predictive maintenance of machinery 

and equipment. The development of these 

technologies is expected to contribute to even greater 
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efficiency and cost reduction in the operation of 

technical equipment [7]. 

Research into new methods of technical 

diagnostics is focused on extending the service life 

of equipment. To this end, new hardware solutions 

are being developed, e.g. high-precision fault-

tolerant sensors. At the same time, advanced signal 

processing techniques are being developed to meet 

the new objectives. Currently, special attention is 

being paid to the non-linear analysis of diagnostic 

signals. 

The analysis of operating parameters makes it 

possible not only to assess the current state of 

machines, but also to predict their future states. The 

basic premise of diagnostics is the postulate linking 

the increase in vibroacoustic energy levels with the 

progression of the degradation process. Therefore, it 

is necessary to develop advanced diagnostic methods 

that accurately identify the boundary between the 

normal state and the point at which it becomes unsafe 

to continue operating the equipment. 

Although numerous machines can be 

characterised by linear models, nonlinear distortions 

often manifest in their operation, necessitating the 

use of nonlinear models for accurate description. 

Variations in machine behaviour may arise from 

factors such as wear and tear or the inherent 

instability of their operation. Many objects, 

including hydrodynamic bearings in specific 

operating states, do not get an adequate description 

by linear models. Despite extensive research 

conducted in scientific centres, the intricate physical 

phenomena of hydrodynamic bearings persistently 

fascinated researchers [8]. The mathematical models 

for hydrodynamic bearings enable for a precise 

prediction of their behaviour, although requiring the 

consideration of numerous parameters. Developing 

these parameters and conducting simulations 

typically consume significant time. Given the array 

of bearing designs, there is a pressing need to 

develop new, more accurate models [9]. 

 

1.1 Bearing diagnostics 

Bearing diagnostics constitutes a crucial aspect 

of machine maintenance and condition monitoring. 

Bearings serve as vital components in most rotating 

machinery, and their malfunction can result in severe 

failures and subsequent downtime. Efforts to 

develop diagnostic methods within this domain 

prioritise early detection of problems, facilitate 

proactive maintenance planning, and prevent costly 

repairs [10]. 

Conventional approaches to bearing diagnosis 

rely on vibration analysis. Using advanced signal 

processing algorithms such as Fast Fourier 

Transform (FFT) and entropy-based techniques, it 

becomes feasible to precisely identify alterations in 

vibration signals, potentially indicating issues such 

as pitting, delamination, or lubrication disorders 

[11]. 

In article [12], the authors outline a methodology 

to determine the dynamic coefficients of the 

bearings. The dynamic coefficients of the two 

hydrodynamic bearings were determined through 

experimental investigations. A methodology was 

developed, using impulse response analysis, to 

calculate stiffness, damping, and mass coefficients. 

This unified algorithm accommodated varying 

rotational speeds for a complete analysis. Tests were 

carried out with a modal hammer and shaft 

displacements were measured using eddy current 

sensors [13]. The experiments took into account the 

influence of a variety of parameters on the results 

obtained [14], which allowed a more complete 

description of the dynamic state of the rotors. 

Analysis has shown that the method can effectively 

identify differences in bearing behaviour at different 

loads and speeds, providing valuable information for 

diagnostic and maintenance activities [15]. 

Other approaches, based on STFT (Short-Time 

Fourier Transform) or wavelet analysis methods, are 

used for more specialised investigation of bearing 

characteristics. They allow the types of damage to be 

distinguished according to their unique frequency 

characteristics [16]. 

Recent research has focused on applying deep 

learning and its methods to automate bearing 

diagnostics. These techniques, using large data sets 

and the ability to 'learn' diagnostic features 

autonomously, enable the creation of predictive 

systems that can predict the time to bearing failure 

with high precision [17]. 

In an article [18] Blaut and Brenkacz analysed 

the effect of rotor imbalance on the value of the 

Teager-Kaiser energy operator (TKEO) in 

hydrodynamic bearings. The analysis employs 

TKEO, a method of calculating the rapid energy 

calculation method previously used in diagnostics, 

such as assessing hydrodynamic bearing instability 

and detecting gearbox failures. The study details the 

application of the Teager-Kaiser method to evaluate 

rotor imbalance in hydrodynamic bearings, 

conducted through an experimental investigation of 

the impact of rotor imbalance on the energy operator 

value. The experimental results confirm the 

usefulness of TKEO in machine condition 

assessment, demonstrating a clear correlation 

between changes in operating parameters and TKEO 

values, which contributes to a better understanding 

of rotor dynamics and its impact on machine 

operations. 

 

1.2 Dispersion entropy 

Dispersion entropy (DisEn), based on Shannon 

entropy, is a tool that allows the rapid determination 

of signal irregularities. The concept of symbolic 

dynamics originates from the simplification of 

measurements, in which the time series transforms a 

new signal comprising only a limited set of distinct 

elements. The analysis of the signal dynamics is 

based on the analysis of a sequence of symbols, 

which may lead to the loss of some detailed 

information but at the same time makes it possible to 
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preserve the invariant, robust features of the 

dynamics. 

The best known methods based on symbol 

entropy are approximate entropy permutation 

entropy and DisEn, as used in this work. DisEn 

represents an innovative approach to monitoring 

unbalanced temporal signals. In the context of the 

analysis of one-dimensional signals, of length N, 

represented by the time series x = {x1, x2, ..., xN} 

Simplifying signal analysis using the dispersion 

entropy (DisEn) method consists of four main steps 

(fig. 1): 

Step 1: assign signal elements to classes using 

different linear and non-linear approaches. This 

allows for efficient classification of the signal 

elements. 

Step 2: Identify possible dispersion patterns by 

creating embedding vectors, where each vector 

has a specific embedding length and time delay. 

These vectors form the dispersion patterns that 

are used for further analysis. 

Step 3: Count the incidence of each potential 

dispersion pattern by calculating the relative 

frequencies. 

Step 4: Calculation of entropy based on Shannon's 

definition of entropy. The resulting entropy 

value, DisEn, reflects the degree of chaotic and 

unpredictable nature of the signal, taking into 

account the dimension of the embedding, the 

time delay, and the number of classes. 

In this way, the DisEn method makes it possible 

to analyse and evaluate the degree of signal chaos, 

which can be useful for monitoring vibration signals 

in machine diagnostics. A comprehensive 

mathematical description can be found in the work 

of Rostaghi [19]. 

The normalised dispersion entropy can be written 

as 

𝑁𝐷𝑖𝑠𝐸𝑛(𝑥,𝑚, 𝑐, 𝑑) =
𝐷𝑖𝑠𝐸𝑛(𝑥,𝑚, 𝑐, 𝑑)

𝑙𝑛(𝑐𝑚)
 (1) 

where m is the dimension of the embedding, c is 

the number of classes, and d is the time delay. 

When determining the entropy, it is necessary to 

choose the appropriate parameter values. In the case 

of DisEn, there are three parameters: the embedding 

dimension m, the number of classes c and the time 

delay d. In this paper, the parameters determined by 

Rostaghi are adopted [20]. It analysed the effect of 

the parameters on the vibration signal of a properly 

functioning bearing from the Case Western Bearing 

Dataset [21]. When the embedding dimension m is 

large, the DisEn algorithm may struggle to detect 

small changes effectively. Theoretically, if c is too 

small, two widely separated amplitude values can be 

assigned to a similar class, whereas a large value of 

c can lead to even a slight change altering their class, 

rendering the DisEn method sensitive to noise. 

Additionally, a high value of c can negatively impact 

the computation time. Furthermore, increasing the 

time delay d beyond the value of d = 4 leads to an 

increase in the DisEn standard deviation of the 

signals. 

 

1.3 Use of disentropy in diagnostics 

Entropy, as a measure of the uncertainty or 

randomness of a system, is a fundamental concept in 

information theory, statistics, physics, and 

increasingly in diagnostic engineering. In 1948, 

Shannon defined information entropy, which 

became the basis for many subsequent theories and 

applications in various fields of science and 

technology [22]. Since then, different variations of 

entropy have been adapted to specific applications, 

including approximation entropy (ApEn) as 

a measure of the complexity of biological and 

financial systems introduced by Pincus in 1991 [4], 

and permutation entropy (PE), which was proposed 

by Bandt and Pompe in 2002 as a tool to study the 

complexity of time series data [23]. 

 These methods have served as a basis for further 

research and the development of new concepts such 

as dispersion entropy (DisEn). Dispersion entropy, 

introduced by Rostaghi and Haddadnia in 2016, is 

one of the most recent extensions in this field [19]. 

DisEn is used to analyse the complexity of signals 

by assessing their dynamics and unpredictability. In 

the context of machine diagnostics, DisEn has 

proven particularly useful due to its ability to detect 

subtle irregularities and instabilities in signal data. 

In the context of mechanical engineering, the size 

of the time window is crucial to the accuracy and 

effectiveness of the dispersion entropy as 

a diagnostic method. Work such as that by Hamed 

Azami and Mohsen Rostaghi (2016) introduces 

dispersion entropy as a method of temporal analysis, 

highlighting the importance of appropriate selection 

of time windows to preserve signal dynamics [19]. 

 
Fig. 1. Diagram of the dispersion entropy (DisEn) method 
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An article by Sandoval et al. [24] presents a study 

using entropy-based indicators to diagnose bearing 

failure. The study focusses on the importance of 

monitoring bearing conditions in wind turbines, 

where low operating speeds and high loads make it 

difficult to use traditional vibration techniques. The 

paper introduces new techniques, such as 

approximation entropy, dispersion entropy, singular 

value decomposition entropy, spectral entropy, and 

permutation entropy, which increase the 

effectiveness of vibration analysis in bearing 

condition diagnosis. They were used to analyse 

vibration signals obtained on a purpose-built test 

platform with bearings of different operating 

conditions. The results show that entropy-based 

indicators can distinguish damaged bearings at low 

speeds with greater accuracy compared to traditional 

indicators. Furthermore, the integration of traditional 

and entropy-based indicators improves the reliability 

of diagnosis. 

 

2. SIMULATION STUDIES 

 

To demonstrate the use of DisEn with a sliding 

window, numerical experiments were carried out on 

signals that describe basic mechanical systems. The 

work started for the simplest mechanical cases, and 

then the model was extended. The displacement and 

total energy diagrams of the systems are shown for 

easier interpretation. Another solution would be to 

add displacement, velocity, or acceleration 

diagrams. 

 

2.1 Natural vibrations of a system with one 

degree of freedom 

When examining a system with one degree of 

freedom, governed by the equation of motion, 

𝑚�̈� + 𝑘𝑥 = 0, (2) 

we obtain the solution  

x=Acos(ωt+φ) (3) 

and DisEn determined from the displacement. Figure 

2 illustrates the displacement-time plot for the 

system as described by Equation (2). 

 
Fig. 2. The trajectory for an oscillating system 

described by Equation (2), with the parameters: 

mass 𝑚 = 1, and stiffness k = 10 

 

By analysing a system with known parameters, 

its energy can be determined. When analysing non-

linear phenomena, observing energy changes 

provides a more comprehensive understanding of the 

system's behaviour. The energy of a system 

encompasses various forms, including kinetic 

energy, potential energy, thermal energy, or 

chemical energy. This makes it a versatile descriptor 

that takes into account the various aspects of 

machine operation. Changes in the energy of 

a system can indicate changes in the efficiency of the 

machine. For example, a decrease in kinetic energy 

may indicate a decrease in machine efficiency 

related to wear and tear. Therefore, the following 

discussion focusses on the displacement of the 

system and its kinetic energy described by the 

equation. 

𝐸 =
1

2
𝑚�̇�2. (4) 

And the potential energy. 

𝑈 =
1

2
𝑘𝑥2 (5) 

Figure 3 shows the evolution of potential, kinetic, 

and total energy for an oscillating system with one 

degree of freedom, characterised by the parameters: 

mass m=1 and stiffness k=10. The system maintains 

a constant total energy, while the entropy of 

dispersion oscillates around the value of 2.4. 

 
Fig. 3. The waveforms of potential, kinetic, and 

total energy for an oscillating system described 

by Equation (2), with the parameters: mass  

m = 1 and stiffness k = 10 

 

For such a system, it is possible to analyse the 

smallest window width that can be used to obtain 

a repeatable DisEn value for vibration signals. The 

signal is harmonic, which makes it possible to 

neglect the influence of changes in amplitude, 

frequency, and noise values on the minimum 

measurement window length. Figures 4-7 show the 

dispersion entropy values with a sliding window as 

a function of the window length: ½ T, T, 2T, and 3T 

of the oscillation period of the system described by 

Equation (2). The vertical dashed lines mark the end 

of the measurement window, and in their place, the 

value of DisEn for the window is plotted.  
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Fig. 4. DisEn value calculated for the displacement 

of an oscillating system described by Equation (2), 

with the parameters: mass m = 1 and stiffness  

k = 10, with a window length of ½ the oscillation 

period: win=½T 

 
Fig. 5. DisEn value calculated for the displacement 

of an oscillating system described by Equation (2), 

with parameters: mass m = 1 and stiffness k = 10, 

with a window length equal to the oscillation period: 

win = T 

 
Fig. 6. DisEn value calculated for the displacement 

of an oscillating system described by Equation (2), 

with the parameters: mass m = 1 and stiffness k = 

10, with a window length equal to the oscillation 

period, win = 2T 

 
Fig. 7. DisEn value calculated for the displacement 

of an oscillating system described by Equation (2), 

with the parameters: mass m = 1 and stiffness k = 

10, with a window length equal to the oscillation 

period, win = 3T 

 

Figure 8 shows the dispersion results of the 

entropy for different time windows. On the x-axis is 

the window length, while on the y-axis is the value 

of the entropy of dispersion. Each box corresponds 

to a different window length, as indicated by ½ T, T, 

2T, and 3T, where T is the oscillation period of the 

analysed system. The dashed lines indicate the 

median entropy value for each window, and their 

lengths indicate the average entropy value in that 

window. In addition, the mean value is plotted on the 

graph. 

 
Fig. 8. DisEn values calculated for the displacement 

of an oscillating system described by Equation (2), 

with the parameters: mass m = 1 and stiffness  

k = 10, with a window length equal to the period  

of oscillation, win=½ T, 1T, 2T and 3T 
 

For free oscillations, DisEn needs at least a 

window of two oscillation periods. For a shorter 

window, the oscillations are about 10% of the DisEn 

value. It should be noted that for a window of less 

than 2 oscillations, the maximum values of DisEn 

have maximum values similar to those obtained with 

a longer measurement window. The maximum value 

can therefore be taken into account when a longer 

window is not possible and improve the rate of 

change detection in a system whose behaviour can 

be approximately described by equation (2). 

  

2.2 Linear damping 

Viscoelastic damping is a phenomenon that 

occurs in various mechanical and material systems, 

involving the conversion of the mechanical energy 

of vibration or motion into heat due to internal 

friction, which is characteristic of viscoelastic 

materials. This phenomenon is crucial in the context 

of engineering and material sciences, as it allows the 

control and reduction of vibration amplitudes in 

machines and structures, resulting in longer life and 

reliability. The mechanism of viscoelastic damping 

is based on the properties of viscous materials that, 

during deformation, exhibit resistance that depends 

on the speed of deformation. The effectiveness of 

viscous damping in a given material or system 

depends on several factors, including vibration 

frequency, temperature, and the physicochemical 

properties of the material. 

In practice, viscous damping is used in a wide 

range of applications, from building structures to car 

components (e.g. shock absorbers) to advanced 

aerospace engineering systems. The use of damping 

materials and components makes it possible to 

effectively reduce vibrations and noise. The equation 

of motion with viscous damping is as follows. 
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𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 0, (6) 

where m is the mass, c is the damping coefficient 

and k is the stiffness coefficient. The solution to this 

equation can be written in the following form 

𝑥(𝑡) = 𝐴𝑒−ℎ𝑡cos(𝜆𝑡 + 𝛷) (7) 

where 𝜆 - vibration type parameter, 𝜆2  = 𝜔2 - ℎ2 

an energy 

𝐸 =
1

2
𝐴2(𝑒−ℎ𝑡)2(cos(𝜆𝑡 + 𝛷)2ℎ2𝑚

+ 2ℎ𝜆𝑚cos(𝜆𝑡
+ 𝛷)sin(𝜆𝑡 + 𝛷)
+ sin(𝜆𝑡 + 𝛷)2𝜆2𝑚
+ 𝑘cos(𝜆𝑡 + 𝛷)2) 

(8) 

Figure 9 shows the unraveling of equation (7) for 

the parameters: m = 1 kg, c = 0.3 N*s/m, k = 10 N/m. 

Figure 10 shows the waveform of potential, kinetic, 

and total energy for an oscillating system with 

a degree of freedom for the parameters: mass m = 1 

kg, c = 0.3 N*s/m, k = 10 N/m. 

 

 
Fig. 9. The trajectory for the system described  

by Equation (5), with the parameters: mass m = 1 

kg, c = 0.3 N*s/m, k = 10 N/m 

 

Fig. 10. Potential, kinetic, and total energy 

waveforms for the system described by Equation  

(5): mass m = 1 kg, c = 0.3 N*s/m, k = 10 N/m 

 

Figures 11-14 show the dispersion entropy 

values with a sliding window as a function of the 

window length: ½ T, T, 2T, and 3T of the oscillation 

period of the system described by Equation (5). 

Figure 15 shows the results of the entropy 

dispersion analysis for different time window 

lengths. 

 

 
Fig. 11. DisEn value calculated for the displacement 

of the system described by Equation (6): mass m = 1 

kg, c = 0.3 N*s/m, k = 10 N/m, with a window 

length equal to the period of oscillation, win=½T 

 
Fig. 12. DisEn value calculated for the displacement 

of the system described by Equation (6): mass m = 1 

kg, c = 0.3 N*s/m, k = 10 N/m, with a window 

length equal to the period of oscillation, win=T 

 
Fig. 13. DisEn value calculated for the displacement 

of the system described by Equation (6): mass m = 1 

kg, c = 0.3 N*s/m, k = 10 N/m, with window length 

equal to two oscillation periods, win=2T 

 
Fig. 14. DisEn value calculated for the displacement 

of the system described by Equation (6): mass m = 1 

kg, c = 0.3 N*s/m, k = 10 N/m, with a window 

length equal to 3 oscillation periods, win=3T 
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Fig. 15. DisEn values calculated for the 

displacement of the system described by Equation 

(6): mass m = 1 kg, c = 0.3 N*s/m, k = 10 N/m, with 

a window length equal to the period of oscillation, 

win=½T, 1T, 2T and 3 T 

 

For free oscillations with linear damping, DisEn 

needs at least a window width of two oscillation 

periods. For a shorter window, the oscillations are 

about 10% of the DisEn value. As before, it can be 

seen that in the case of a window of less than 2 

oscillations, the maximum values of DisEn have 

values similar to those obtained with a longer 

measurement window. The lack of sensitivity of the 

DisEn value to a change in the amplitude value is 

consistent with the results of the amplitude step 

studies from the work [20]. This should be taken into 

account in the application of DisEn for machine 

diagnostics. As will be shown later, the resistance to 

changes in amplitude can be used to assess the 

hydrodynamic stability as a result of the shape of the 

signal that excludes its amplitude. 

 

2.3 Vibration with nonlinear damping 

Attenuation can be of nonlinear form, which is 

written using the equation. 

�̈� + 𝑘𝑥 + 2ℎ�̇� − 𝑏�̇�3 = 0, 
for: k, 2h, b>0 

(9) 

Equation (9), derived from the literature [18], 

involves parameters such as 𝛽 (related to the 

damping coefficient) and k (the stiffness 

coefficient), with x representing displacement. This 

equation serves to characterise the behaviour of 

a nonlinear object and can simulate the damping that 

occurs in sliding bearings. The system's stability was 

assessed in the Lyapunov sense to analyse its 

behaviour as described by Equation (9). Numerical 

experiments were carried out to evaluate the 

potential application of the methods in the diagnosis 

of the hydrodynamic state of a sliding bearing. The 

study aimed to compare the behaviour of the values 

of the analysed methods in the context of the energy 

of the system, based on the principles of Newtonian 

mechanics. An increase in energy is observed when 

perturbations occur that lead to destabilisation of the 

system. Due to the cumbersome or impossible 

determination of the energy for complex real objects, 

the study was carried out on a simulated object. 

The system (8) has three singularities (0,0), 

(−√
𝑘

2ℎ
, 0, (√

𝑘

2ℎ
, 0). The first of these states is stable, 

while the other two are unstable. Figure 16 shows 

shows a plot of the phase trajectories, highlighting 

the singularities, and illustrating all possible states of 

the system. The system exhibits instability that either 

seeks to increase displacement and velocity 

(quadrant I) or decreases displacement and velocity 

(quadrant III). Negative energy occurs when 

displacement and acceleration exceed velocity. 

Changing this sign can pose challenges in 

determining DisEn. Therefore, the system was 

examined by altering the parameter β associated with 

the damping ratio. Figure 17 presents the phase 

trajectories for the vibration of systems described by 

the given equation (9), illustrating the behavior of 

the system for different values of the parameter β in 

the range from 0.24 to 0.3. 

 
Fig. 16. Phase diagram for the system 

described by Equation (9) 

 

 
Fig. 17. Phase trajectories for vibration  

of systems described by Equation (9); 

k = 1, 2h = 0.2, β = 0.24 - 0.3, m = 1 

 

To analyse the value of DisEn in nonlinear 

damping, two examples were considered for the first 

β = 0.2739, 2h = 0.2, k = 1, m = 1. Figure 18 shows 

the displacement of this system; after 17 seconds, the 

value of the displacement increases rapidly.  

Figure 19 shows the energy values for the system 

described by Equation (9) for the coefficients: β = 

0.2739, 2h = 0.2, k = 1, m = 1. After 11 seconds, an 

increase in total energy is already visible, while after 

17 seconds the increase is seen to spike. Figure 20 

shows a phase trajectory graph showing the escape 

of the system from the stable point as velocity and 

acceleration increase. Figure 21 shows the variation 

of the DisEn value for a duration equal to two 

periods of oscillation.  The fluctuations in value are 
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analogous to those observed in simpler systems. 

DisEn does not respond to a sudden change in 

displacement value. 

 

 
Fig. 18. Displacement of systems described  

by Equation (9); k = 1, 2h = 0.2, β = 0.2739, m = 1 

 
Fig. 19. Energy of systems described by Equation 

(9); k= 1, 2h = 0.2, β = 0.2739, m = 1 

 

 
Fig. 20. Phase trajectories for the vibration  

of systems described by Equation (9); k = 1, 2h = 

0.2, β = 0.2739, m=1 

 
Fig. 21. DisEn for vibration of systems described  

by Equation (9); k = 1, 2h = 0.2, β = 0.2739, m = 1; 

with window length equal to 2 periods of vibration, 

win=2T 

Figure 22 shows analogously to the example 

shown above the displacement values for the system 

described by equation (9) for the coefficients: β 

=0.28, 2h = 0.2, k = 1, m = 1. The system differs 

only in the beta value of the parameter by 0.71. 

However, this results in completely different system 

behaviour typical of chaotic systems, i.e. systems in 

which small changes in the input parameters cause 

significant changes in the system output. After 12 

seconds, an increase in displacement can already be 

seen, while after 13 seconds there is a spike in the 

value of displacement. Figure 23 shows a graph of 

energy at 8 and 10 seconds showing an increase in 

energy, while at 14 it is abrupt. Figure 24 shows 

a phase trajectory graph showing the escape of the 

system from the stable point as the velocity and 

acceleration increase. Figure 25 shows the change in 

DisEn for a duration equal to 2 periods of oscillation.  

These changes are consistent with previous models. 

 

 
Fig. 22. Displacement of systems described  

by Equation (9); 2h = 0.2, β = 0.28, k = 1, m = 1 

 

3. EXPERIMENTAL BENCH TESTS 

 

To perform the analysis of the actual signal, an 

experiment was designed and carried out on the 

laboratory bench shown in Figure 27. The bench 

setup includes a speed-controlled electric motor 

connected to a shaft through a coupling. The shaft 

is supported by rolling bearings at both ends, with 

the plain bearing under test positioned in the 

centre. Two eddy current sensors are mounted on 

the test bearing. The bearing utilised in this setup  

 
Fig. 23. Energy of systems described by 

Equation (9); 2h = 0.2, β = 0.28, k = 1, m = 1 

 



DIAGNOSTYKA, Vol. 25, No. 4 (2024)  

Blaut J, Breńkacz Ł: Application of the dispersion entropy with sliding window for the analysis… 

 

9 

 
Fig. 24. Phase trajectories for vibration of systems 

described by Equation (9); 2h = 0.2, β = 0.28, k = 1, 

m=1 

 
Fig. 25. DisEn for vibration of systems described  

by Equation (9); 2h = 0.2, β = 0.2739, k = 1, m = 1; 

with window length equal to 2 periods of vibration, 

win=2T 

 
is a water-lubricated multi-shaft plain bearing. This 
bearing, also known as a cutlass bearing, is a type of 
marine bearing used to support rotating shafts on 
boats and ships. It is a commercial bearing designed 
to fit a 20mm diameter shaft. Eddy current sensors 
are usedas distance sensors, allowing direct tracking 
of the distance on the x and y axes, as shown in 
Figure 26. A laser tachometer measures the shaft 
speed. The lubrication system works on the principle 
of a closed water circuit as a lubricant, with water 
entering the bearing and draining from there. 
Measurement data, such as the signal from the 
tachometer and the x- and y-axis displacements from 
the eddy current sensors, are recorded using 
a measuring card with a sampling frequency of 4200 
Hz and a 16-bit analogue-to-digital converter. 

 
Fig. 26. Vibration monitoring system of cutlass-

bearing nodes 

 
The signal analysed in eddy current sensor 

measurement systems is disturbed by 
inhomogeneities in the shape and physical properties 
of the shaft surface. In the literature, the disturbance 
associated with eddy current measurements is called 

‘runout’. A distinction can be made between 
mechanical and electrical run-out. Mechanical 
failure is related to imperfections in the shape of the 
shaft under test, such as roughness, ripples, the 
presence of scratches, dents, or other deformations. 
Electrical discharge is related to magnetic 
inhomogeneities on the surface of the shaft under 
test. The lack of consistent magnetic surface features 
is the result of mechanical machining processes (e.g., 
turning). This machining creates residual stresses, 
which are the direct cause of the observed variation 
in the electrical run-out of the shaft surface. Due to 
the interference mentioned, the signal is filtered 
using a Butterworth bandpass filter. In the 
experiment, the analysis was carried out by 
observing the frequency corresponding to the 
rotation of the rotor in the band from 0.3 to 2.4 of the 
rotational frequency. Diagnostic information on the 
operation of the stability of the plain bearing can be 
identified on the rotational trajectory. 

Fig. 27. Test stand: 1 - motor with speed control 

system, 2 - clutch, 3 - non-contact digital laser 

tachometer, 4, 10 - rolling bearings, 5 - shaft, 6 - 

journal bearing, 7 - lubricant supply and discharge 

valves, 8 - bearing loading system, 9 - eddy current 

sensors 

 

The experiment carried out makes it possible to 

observe the effect of the length of the displaced 

DisEntr window on mechanical systems to detect the 

loss of stability of rotating machinery. 

The displacement signal for the x-axis was analysed 

(Figure 28). The unstable and stable operation of the 

cutless plain bearing was recorded at a rotational 

speed of 4300 rpm. Figure 29 shows the variation of 

the DisEn value for a window of one revolution 

length (T). Figure 30 shows the fluctuation of the 

DisEn value for a window of two revolutions (2T). 

When comparing the two cases, it can be seen that 

extending the sliding window produces more stable 

results, which is consistent with observations made 

on simulated signals. 

 
Fig. 28. Recorded displacement signal for the 

x and y axes during unstable operation of  

a plain bearing 
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Fig. 29. Dispersion entropy for unstable operation 

for a window length that contains one full rotation  

of the rotor 

 

 
Fig. 30. Dispersion entropy for unstable operation 

for a window length containing two full rotations  

of the rotor 

 

The second experiment concerned the analysis of 

stable operation. The signal was recorded for the 

same speed and load, and stabilisation was achieved 

by increasing the lubricant density. 

The displacement signal for the x-axis was analysed 

(Figure 31). Figure 32 shows the variation of the 

DisEn value for a window of one rotation length (T). 

Figure 33 shows the variation of the DisEn value for 

a window of two revolutions (2T). When comparing 

the two cases, it can be seen that extending the 

sliding window produces more stable results, which 

is consistent with observations made on simulated 

signals.  

 
Fig. 31. Recorded displacement signal for the 

x and y axes during stable operation of  

a cutless plain bearing 

 

 
Fig. 32. Dispersion entropy for stable 

operation for a window length that contains 

one full rotation of the rotor 

 

 
Fig. 33. Dispersion entropy for stable operation for  

a window length containing two full rotations of the 

rotor 

 

Figure 34 shows a box plot of the obtained DisEn 

values for a length she short-circuits two full 

rotations. A significant decrease in the DisEn values 

can be observed for the y-axis. However, the changes 

in the x-axis do not allow a clear assessment of the 

change in DisEn for unstable and stable operation of 

the tested plain bearing. 

 

 
Fig. 34. Dispersion entropy for unstable and stable 

operation over a window length containing two full 

rotations 

 

This paper focusses on the influence of the DisEn 

window length on the application of this method to 

rotating machinery. On the basis of simulated 

signals, the need for a window length of at least 2 

vibration periods was noted. This conclusion is 

consistent with methods for evaluating plain 
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bearings, where at least two rotations are evaluated 

to assess the rotational trajectory of the shaft relative 

to the bearing pan. Figure 35 shows the difference in 

the DisEn values for the x and y signals for stable 

and unstable operation and its variation with window 

length. It can be seen that to distinguish between the 

signals, the length of the window needs to be 

extended so that it is at least 1 revolution, while there 

is no significant change in these values after 2 

revolutions. 

 
Fig. 35. Difference between unstable and stable 

values due to the change in window length from  

100 to 2000 samples with marked window length 

equal to 1, 2 and 4 shaft rotations 

 

4. SUMMARY AND CONCLUSIONS 

 

This article explores the application of dispersion 

entropy (DisEn) with a sliding window to assess the 

stability of machine operations. Research focusses 

on determining the minimum window length that 

ensures stable diagnostic results, which is crucial to 

reducing computational demands and accelerating 

response times. The study covers simple mechanical 

systems, nonlinear systems, and real signals from 

hydrodynamic bearings, to improve diagnostic 

accuracy and efficiency. 

Initially, simulation studies were conducted on 

simple mechanical systems, such as single-degree-

of-freedom oscillators, analysing natural and linearly 

damped vibrations. The findings indicated that, for 

free oscillations, the DisEn value required a window 

of at least two oscillation periods to achieve 

repeatable results. Windows shorter than two periods 

resulted in DisEn value oscillations of about 10%, 

highlighting the need for longer measurement 

windows. 

The research was then extended to systems with 

nonlinear damping, such as sliding bearings, using 

equations that describe nonlinear damping. 

Numerical experiments demonstrated that changes 

in damping parameters significantly affected the 

system behaviour, as evidenced by phase trajectories 

and total energy variations. DisEn values for systems 

with nonlinear damping also required windows of at 

least two oscillation periods to maintain stability. 

In the second part of the study, experimental 

investigations were performed on real signals from 

hydrodynamic bearings. A laboratory setup was 

designed that included a speed-controlled electric 

motor, a rolling bearing, and a test bearing equipped 

with eddy current sensors. The analysis of 

displacement signals showed that during unstable 

bearing operation, the DisEn value varied 

significantly with window length. Longer sliding 

windows (at least two full shaft rotations) produced 

more stable results, consistent with simulation 

observations. For stable bearing operation, while the 

changes in DisEn values were less pronounced, the 

benefits of longer windows remained evident. 

The study concludes that the minimum window 

length to obtain stable DisEn values is at least two 

oscillation periods. Shorter windows lead to unstable 

results, complicating accurate diagnostics. DisEn 

proves to be an effective tool for monitoring 

vibrational signal instability in machine diagnostics, 

allowing the rapid detection of subtle irregularities. 

Although shorter measurement windows can 

expedite the diagnostic process, they do so at the 

expense of the stability of the result. Longer 

windows ensure stability and accuracy, crucial for 

practical applications. 

The experimental results validate the simulation 

findings, reinforcing the reliability of the 

conclusions and suggesting further research on 

optimising diagnostic parameters for various types 

of machinery. Future research should focus on the 

continued miniaturisation of measurement devices, 

integration with the Internet of Things (IoT), and the 

development of intelligent algorithms capable of 

predictive maintenance. 

In summary, this article makes a significant 

contribution to the development of diagnostic 

methods based on dispersion entropy. Findings can 

improve the efficiency and precision of machine 

diagnostics, directly affecting the safety and 

reliability of machine operations. 
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