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Abstract 

The texture feature extraction including grayscale co-occurrence matrix and various shape feature 

extraction methods are adopted in this paper, as well as convolutional neural network based on Visual Geometry 

Group-16 structure. In particular, the Squeeze-and-Excitation module and dilated convolution technique are 

introduced to improve the model, aiming to enhance its feature extraction and classification capabilities. On 

the JPEGWELD dataset, the improved model had 98.7% accuracy in the training set, 97.9% accuracy in the 

test set, and 98.7% recall rate. In the comparative analysis, although the number of parameters of the improved 

VGG16 model was 33.64M and the maximum model size was 385MB, the detection time was only 1.3s. The 

results demonstrated that the model had efficient optimization and computational performance, with a good 

balance between design and optimization while maintaining a short detection time. The proposed method 

exhibits high accuracy and efficiency in the detection of various types of weld defects, demonstrating strong 

universality and adaptability. Its applicability to diverse industrial settings is evident. The study provides an 

effective solution for industrial automated inspection, which is of great significance to improve the quality 

control level and production efficiency of manufacturing industry. 
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1. INTRODUCTION 

 

In modern industrial production, welding 

technology is a part of the key manufacturing process, 

and the quality of the weld is directly related to the 

safety and reliability of the product. There are many 

kinds of weld defects, including but not limited to: 

cracks, non-fusion, porosity, slag inclusion and 

burning through. These defects not only show 

significant visual differences in appearance, but also 

may produce complex textures and geometric shapes 

under different welding materials, process conditions 

and environmental backgrounds. This increases the 

background complexity of weld defect detection, 

especially in the case of lighting changes, background 

interference and different workpiece surface 

conditions, it is more difficult to accurately detect 

weld defects. Therefore, it is of great significance to 

carry out accurate defect detection on the weld. 

Traditional Weld Defect Detection (WDD) mainly 

relies on artificial vision with poor efficiency, and it 

is also easily influenced by operator experience and 

subjective judgment, resulting in unstable and 
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inaccurate detection results [1]. According to relevant 

statistics, the incidence of welding defects may be as 

high as 10% to 30%, depending on the welding 

material and process. The visual characteristics of 

weld defects not only depend on the size and shape of 

the defect, but also are closely related to the surface 

texture of the weld, lighting conditions, resolution of 

the camera equipment and other factors [2]. With the 

development of industrial automation and intelligent 

manufacturing, an efficient and accurate automatic 

weld defect detection method is urgently needed. In 

recent years, machine vision technology has become 

one of the mainstream methods for automated weld 

defect detection [3]. In particular, convolutional 

neural networks (CNNS) have made significant 

progress in the field of image processing, 

demonstrating their potential in automated weld 

defect detection. CNN can automatically extract 

image features and classify them without manually 

designing features, but it may face challenges when 

dealing with complex backgrounds and small defects 

[4]. The main challenges include how to improve the 

accuracy of the model in identifying weld defects, 
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especially in complex backgrounds and different 

types of defects. Meanwhile, it is necessary to 

consider how to improve model performance while 

maintaining or reducing computational costs to adapt 

to resource constraints in practical industrial 

applications. 

This study aims to improve the accuracy of 

automatic detection of weld defects by improving 

CNN models, especially the Visual Geometry Group-

16 (VGG16) model. The goal is to develop an MCV 

system that can accurately identify and classify 

various weld defects to reduce reliance on manual 

inspection. To achieve the above objectives, this 

study adopts texture feature extraction methods 

including Grayscale Co-occurrence Matrix (GLCM) 

combined with shape feature extraction technology 

and discusses a Deep Learning (DL) model based on 

VGG16. Moreover, the Squeeze-and-Excitation (SE) 

module and Dilated Convolution (DC) are introduced 

to enhance the model's feature learning and 

classification capabilities. The innovation of this 

study lies in the integration of SE module and cavity 

convolution technology into the improved VGG16 

model. The SE module enhances useful features and 

removes unimportant features by re-calibrating the 

feature response of convolutional layers. Cavity 

convolution increases the receptive field by 

introducing space interval into the convolution 

kernel, which makes the model capture a wider range 

of context information without increasing the 

computational complexity. The model can effectively 

improve the recognition ability of weld defects under 

complex texture background. The research structure 

is mainly divided into four parts. The first part is to 

review the existing WDD technology, and the 

research progress based on MCV, analyze the 

shortcomings of the existing technology, and provide 

a basis for putting forward an improvement plan. The 

second part introduces the methods of weld feature 

extraction in detail, including texture feature 

extraction and shape feature extraction. This part 

explains how to use GLCM and various shape 

features to extract weld feature. This part describes 

the structure and feature extraction mechanism of the 

VGG16 model, introduces the improved method of 

introducing the SE module and cavity convolution, 

and expounds upon the working principle and 

advantages of the improved VGG16 model. The third 

part proves the effectiveness and superiority of the 

improved algorithm through experiments, including 

the performance analysis before and after the 

improvement and the comparison with other 

advanced algorithms. This part also shows the 

experimental results and data analysis in detail. The 

fourth part is the discussion of the results. The fifth 

part summarizes the research results, discusses the 

application prospect of the improved model in 

industrial WDD, and puts forward the practical 

significance and future research direction. 

 

 

2. LITERATURE REVIEW 

 

With the advancement of MCV technology, 

manual defect detection is gradually being phased 

out. Numerous scholars are improving MCV and 

using it in defect detection to achieve intelligent 

defect detection. Lai proposed a high-precision 

optical detection system combined with DL 

technology to accurately detect and analyze various 

defects in screw heads, including damaged and peeled 

surfaces. It trained the designed CNN using 3,200 raw 

images, showing a detection with 92.8% accuracy and 

average speed of 0.03 s/image. Compared to 

traditional MCV ways, this system was preferable for 

inspecting in industrial production lines [5]. Chen et 

al. proposed a digital twin based on Multi-sensor 

Fusion (MSF) for in-situ quality monitoring and 

defect correction during robot laser directed energy 

deposition process. This method could synchronize 

and register MSF within the 3D volume of the part. 

Compared to traditional single-sensor-based 

monitoring, MSF could gain a deeper understanding 

of potential process physical characteristics. It paved 

the way for adaptive additive manufacturing, with 

superior efficiency, less consumption, and cleaner 

production [6]. Pratt et al. trained and tested a 

semantic segmentation model in accordance with the 

u-net architecture for analyzing EL image of 

photovoltaic modules made by monocrystalline and 

polycrystalline silicon solar cells. The focus was to 

develop a DL method for computer vision. This 

method was device-independent and could generate 

EL images regardless of the device used and image 

quality [7]. Nagata et al. proposed a CNN-based 

defect detection Support Vector Machine (SVM) 

technique. They built, trained, and tested deep CNN-

based SVM, and promoted visual-based detection to 

detect various defective manufacturing faults. In this 

work, pre-trained sssNet and AlexNet were utilized as 

feature vector extractors for training and showed 

good detection performance [8]. 

Eshkevari et al. developed an MCV system for 

controlling the size characteristics of medical glass 

bottles. Innovative methods have been developed to 

capture images of glass bottles and their reflections 

accurately due to the hardship of doing so. This 

ensures that appropriate images were gained. Finally, 

an automated method for measuring the different size 

characteristics of penicillin bottles was proposed and 

evaluated using real samples [9]. Iker et al. proposed 

a method called BoDoC that can improve 

classification. To evaluate the method, a new dataset 

was created from the foundry for detecting surface 

errors in castings with two different defects. The 

study also introduced a series of techniques for 

selecting features from images. Through comparison, 

it was verified that their proposed method improved 

the direct classification results in real scenes, with an 

accuracy of 91.305% [10]. Mohamed et al. created a 

real-time MCV prototype to sort and detect quality 

parameters of various agricultural products. The 
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prototype was taken for image acquisition and 

processing, utilizing color value data from all relevant 

defects. Python was developed for simple 

thresholding. The prototype has been successfully 

used to detect external faults in the tested product 

with rational accuracy. The detection rates during 

real-time operation of oranges, potatoes, and peanuts 

were 96.97%, 98.50%, and 99.09% [11]. Liu et al. 

proposed a knowledge reuse strategy to train CNN, 

which transferred knowledge from other visual tasks 

to industrial defect detection tasks by introducing 

model-based transfer learning and data augmentation. 

This strategy had great accuracy with restricted 

training samples. Experiments on injection molded 

products have shown that when only 200 images were 

available for each category, the detection accuracy 

improved to around 99%. This method was also 

reliable enough in detecting complex faults with 

multiple appearances [12]. Zuo et al. proposed an 

intelligent multi-expert inspection method based on 

X-ray to solve the problems of efficiency and 

accuracy in the evaluation of pipeline welding 

defects. In the actual defect assessment application 

case, the recall rate of this method is 98.5%, the 

accuracy is 95.2%, and the accuracy is 97.4% [13]. 

Jiang et al. proposed a method for welding defect 

recognition based on convolutional neural networks 

(CNN) to solve the serial effects of multiple steps 

such as image preprocessing, region segmentation, 

feature extraction and type recognition in traditional 

methods. The results show that this method has higher 

accuracy than traditional CNN and has been 

successfully applied to welding defect identification 

[14]. 

The above studies show that MCV has a wide 

range of research in defect detection and has also 

achieved certain results. Nevertheless, there are still 

some deficiencies, such as a lack of technical 

versatility, an inability to be well adapted to different 

industrial environments, and various types of defect 

detection. Some high-precision detection methods 

require a lot of computing resources and complex 

hardware equipment and are difficult to be applied in 

resource-limited industrial environments. This study 

aims to improve the VGG16 model and analyze its 

application in WDD. 

 

3. SURFACE WDD BASED ON MACHINE 

VISION 

 

3.1. Weld seam feature extraction 

To achieve surface WDD, extracting weld seam 

features is needed. Therefore, the study starts from the 

texture and shape characteristics. In texture feature 

extraction, this study adopts GLCM, which quantifies 

texture information by examining the spatial 

relationships of grayscale levels in the image [15-17]. 

Figure 1 shows the calculation process of GLCM. 

Figure 1 shows the grayscale values in the image 

as the horizontal and vertical coordinates of the 

matrix, and the quantity of occurrences of grayscale 

values is statistically analyzed. To reduce the 

computational complexity of GLCM at high 

grayscale levels, the grayscale level of the image is 

often simplified to 8 or 16 levels. This processing 

significantly reduces computational complexity. 

Image recognition mainly utilizes statistical features 

based on GLCM, such as angular Second-order 

Moments (SDOM). The larger the value of SDOM, 

the more pixel value sequences each grayscale level 

contains, resulting in coarser image texture and more 

prominent feature information. On the contrary, the 

image texture becomes finer [18]. Through SDOM, 

weld characteristics can be classified into five types: 

normal weld, fracture, curling, crack, and burn 

through. 
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Fig. 1. Calculation of GLCM 

 

Shape is the most intuitive way to describe an 

object. The shape mainly refers to the closed curve 

around the object. Shape features are also important 

features that distinguish different objects. This study 

focuses on extracting shape features from weld seam 

images after defect segmentation. The extracted 

features mainly include weld width, perimeter, area, 

duty cycle, elongation, and 7 invariant matrices. The 

expression for the width of the weld seam is shown in 

formula (1) [19]. 

0

n

i

i

W y
=

=       (1) 

In formula (1), W  represents the image width. 

The image perimeter is the sum of the pixels of the 

outer contour of the weld seam, and its expression is 

formula (2). 

0 0

2 ( )
ym

i i

i i

P x y
= =

=  +      (2) 

In formula (2), P  represents the circumference of 

the image. By calculating the girth, a basic geometric 

feature of the weld can be obtained, which helps to 

distinguish different types of weld defects. The image 

area is the amount of pixels included in the weld seam 

image, as shown in formula (3). 

0 0

m n

i i

i i

Area x y
= =

=         (3) 

In formula (3), Area  represents the area of the 

image. By calculating the area, it is possible to further 

understand the size and coverage range of the weld 

seam, which also helps to accurately classify and 
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identify weld defects. The image duty cycle is the 

ratio of the defect area to the minimum bounding 

rectangle area, as shown in formula (4). 

*

S
Rq

L W
=                                (4) 

In formula (4), Rq  is the image duty cycle, S  

represents the defect area, and L  is the length of the 

bounding matrix. Elongation is the length-width ratio 

of the min-bounding rectangle of a defect, expressed 

as formula (5). 
W

Rt
L

=              (5) 

In formula (5), Rt  represents the image 

extension. This study uses Hu moment invariants. 

The order and center moments of the image are 

represented by formula (6). 
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       (6) 

In formula (6), pqm  represents the image moment 

and pq  represents the image center distance. M  

and N  represent the length and width of the image, 

respectively. p  and q  represent the image moment 

dimension. The center moment is normalized using 

formula (7). 

'

pq

pq





=      (7) 

In formula (7),   represents the normalized 

standard value of center distance. By combining the 

center distances of the second and third orders, seven 

Hu invariant moments can be obtained. 

 

3.2 Classification of weld defects based on CNN 

In defect classification problems, machine 

learning based on image texture and shape features as 

feature vectors has good results, but its recognition is 

limited by manually extracted features. Therefore, a 

method that can automatically extract features for 

classification is needed. CNN adopts local receptive 

fields and weight sharing, which improves the 

model's generalization ability while reducing the 

training parameters of the neural network. Therefore, 

using convolution to filter feature values in images 

has the effect of improving model recognition rate 

[20]. The structure of the VGG16 network is shown 

in Figure 2. 

Figure 2 is the structure of VGG16, which has 13 

convolutional layers and uses a continuous stacking 

of 3*3 Convolutional Kernels (CKs) instead of the 

large CKs in AlexNet, reducing parameters and 

increasing network depth while having the same 

receptive field [21-22]. The pooling layer adopts the 

same pooling parameters. The convolutional and 

pooling layers of the first 16 layers extract image 

features, and finally complete the classification 

through 3 Fully Connected Layers (FCLs) and 

Softmax classification layers to obtain the final result. 

The convolutional layer in the VGG16 structure 

extracts features from the data and enhances feature 

classification. The operation process is shown in 

Figure 3. 
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Fig. 2. VGG16 network structure 
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Fig. 3. Convolution operation process 

 

In Figure 3, the essence of the convolution 

operation is to perform a weighted sum of the images. 

The CK continuously interacts on the Feature Map 

(FM), and the weighted sum of the weights and the 

feature values of each point in the CK region class is 

used to complete feature extraction. The size of 

convolutional output features is formula (8). 

2
1

w p f
n

s

+ −
= +      (8) 

In formula (8), n  and w  are the size of the 

output/input FM. p  and f are the size of the edge 

filled pixels and CK. s  represents the stride of the 

CK sliding. After the convolutional layer, it is usually 

a pooling layer, which aims to reduce the 

dimensionality of the feature images output by the 

convolutional layer. The pooling layer has both 

average pooling and maximum pooling. The features 

obtained by average pooling are more sensitive to flat 

areas, while the features obtained by maximum 

pooling are more sensitive to edge and corner areas. 

Figure 4 shows the pooling process of both. 

After different pooling methods in Figure 4, it is 

found that average pooling takes the average feature 

value within the template area as the output, while 

maximum pooling takes the max feature value within 

the template area as the output. Another function of 

the pooling layer is to expand the receptive field of 

the network, which refers to the mapping range of 
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pixels on the output FM to the input FM. The feature 

values output by CNN represent the information of a 

certain region in the input FM. The larger the 

receptive field, the wider the mapping range of the 

output feature values on the input FM, indicating that 

the output feature values contain more extensive 

information. Conversely, the larger the receptive 

field, the more detailed the information contained in 

the output feature values. 
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Fig. 4. Maximum pooling and average pooling 

 

3.3. Improved CNN model for VGG16 

In the VGG16 network structure, convolutional 

layers perform undifferentiated feature extraction on 

welding images. Although a large number of features 

can ensure detection accuracy, they also introduce 

features that are not of concern to weld defects. 

Therefore, this study aims to address the above issues 

and improve the model by introducing the SE module. 

Figure 5 shows the basic structure of SE. 

Input

Convolution

1*1*C 1*1*C

 

Fig. 5. Basic structure of SE module 

 

In Figure 5, trF  represents convolution and 

operation, and U  represents FM. The image is 

compressed, stimulated, and the weights are 

redefined to obtain features. Compression is the 

global average pooling of FMs, compressing each 

feature channel into a real number, so that each real 

number can represent the global receptive field of that 

channel. After completing the compression, an FM of 
1 1 C   is obtained. Incentive is composed of two 

FCLs. The first FCL completes the dimensionality 

reduction of the FM and is activated by the Relu 

function. The second FCL completes the 

dimensionality enhancement of the FM and is 

activated by the Sigmoid function. The two fully 

connected processes continuously learn the weight 

values of each channel through weight learning. 

After completing convolution in the VGG16 

model, a pooling layer is added, partly to increase the 

receptive field of convolution and reduce 

computational complexity. However, this process 

also reduces the spatial resolution of the input data. 

To address this issue and increase the receptive field, 

DC is used in this study. The difference in 

convolution between DC and the original CNN model 

of VGG16 lies in the difference in receptive fields. 

The receptive field of the convolutional layer in the 

original VGG16 model is continuous, while DC can 

take values at intervals. The use of DC can effectively 

reduce the number of pooling layers and improve 

Recognition Accuracy (RA). Choosing different DC 

rates results in different receptive fields for 

convolution operations, and the scale of the obtained 

feature data information is also different. Different 

scales of information are crucial in data processing. 

The expression for DC is formula (9). 

1, 1ri r rj r ijg h− − − − =                       (9) 

In formula (9), ijh  represents the convolution 

kernel in the VGG16 network, and r  represents the 

DC rate. Assuming r  is the convolution kernel of 1 

and 2, and its DC representation is shown in Figure 6. 

r=1

r=2

 

Fig. 6. Dilated convolution 

 

In Figure 6, the colored blocks represent the 

parameters that the convolution kernel needs to 

calculate, while the white blocks represent the 

positions where the matrix is 0. The size of the CK 

obtained after the expansion of the DC kernel is 

formula (10). 
( 1)( 1)o k k r= + − −              (10) 

In formula (10), o  and k  are the size of the 

expanded CK and original CK. Since the presence of 

zero values does not increase computational 

complexity, adding zero values between CKs can 

increase the receptive field of convolutional 

operations without increasing computational 

complexity. In summary, in the welding surface 

defect detection method, the MCV technology and 

algorithm used in the research include GLCM, CNN 

and the improved VGG16 model. Firstly, the texture 

features of welds are extracted by GLCM, which 

quantifies texture information by examining the 

spatial relationship of image gray level, and divides 

welds into five features by statistical features. 

Secondly, shape feature extraction includes weld 

width, perimeter, area, duty cycle, elongation and Hu 

invariant moment. These features are extracted 

through the segmented weld image to better 

distinguish different types of weld defects. The 

VGG16 network structure is used to classify weld 
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defects. The network is composed of 13 convolutional 

layers, and image features are extracted through 

continuous stacking of 3×3 convolutional nuclei, and 

the classification is completed through the FCL and 

Softmax classification layer. To enhance the 

performance of the model, an SE module has been 

incorporated, which serves to enhance the useful 

features and to remove the unimportant features by 

recalibrating the feature response of the convolutional 

layer. In addition, hollow convolution is used to 

increase the receptive field without increasing the 

computational complexity. By introducing space 

interval into the convolution kernel, the model can 

capture a wider range of context information, thus 

improving the identification accuracy of weld defects. 

 
4. ANALYSIS OF WDD EFFECT BASED ON 

IMPROVED VGG16 ClNN MODEL 

 

This study conducts performance comparison 

experiments to validate the effectiveness of the 

improved algorithm. To ensure fairness and accuracy, 

all networks use the same dataset and set the optimal 

parameters in the experiment. The JPEGWELD data 

set is selected in this study, which contains 4,000 

images of steel plate weld defects. The images of the 

data set are divided into five defect types: normal 

weld, fracture, flanging, crack and burn through. The 

JPEGWELD dataset contains images of weld defects 

of different types and severity, covering common 

welding problems. The diversity ensures that the 

model can be effectively trained and tested on 

different defect types. The image quality of the data 

set is high, which ensures the accurate extraction of 

texture and shape features. Although the dataset 

contains a variety of weld defect types, the number of 

images for some defect types can be uneven, resulting 

in the model learning less about certain types of 

defects during training. The utilization of the 

JPEGWELD data set in the experiment is conducive 

to the promotion of the learning ability and 

generalization ability of the model, as well as to 

subsequent comparative experiments. This study first 

analyzes the performance of the VGG16 CNN model 

before and after improvement, and evaluates it 

through loss rate, accuracy, summoning rate, and F1 

score indicators. Then, current advanced algorithms 

are selected for comparison. 

 

4.1. Performance analysis of improved VGG16 

CNN model 

This study divides the dataset into training and 

testing sets in an 8:2 ratio and set the initial learning 

rate of the improved VGG16 model to 0.001 and the 

batch size to 32. In the process of WDD, high-quality 

weld images are first captured by high-resolution 

industrial cameras, multi-spectral imaging and laser 

scanning technologies. Then, the images are 

preprocessed by gray-scale, normalization, image 

enhancement, denoising and data enhancement to 

improve the clarity of the images and the accuracy of 

feature extraction. The main data acquisition 

equipment is as follows: Basler ace1920-40gm high-

resolution industrial camera with a resolution of 

1920x1200; Laser scanner Leica BLK3D, accuracy ± 

1.0mm; The multi-spectral imaging system Headwall 

Photonics Micro-Hyperspec covers visible light and 

infrared spectrum band only 400nm-1000nm. Tthe 

gray-scale processing is to convert the color image to 

gray-scale image to reduce the computational 

complexity and concentrate on processing the 

brightness information of the weld. Image 

normalization normalizes image pixel values to [0,1] 

to reduce the impact of light changes on detection 

results. The contrast of weld and defect is improved 

by edge enhancement and other methods. In terms of 

feature extraction of weld defect samples, the study 

not only extracts the JPEGWELD data set, but also 

obtains these features through the weld width, depth, 

Angle and other geometric features through high-

precision measurement equipment, which is 

combined with image data for comprehensive 

analysis. In the above experimental environments and 

experimental methods, the loss rate results of the 

model before and after improvement are shown in 

Figure 7. 
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Fig. 7. Comparison results of loss curves B&A model 

improve`ment 

 

Figures 7 (a) and (b) show the loss function curves 

of the unimproved and improved VGG16 CNN 

models. In 7 (a), the trend of this curve shows that the 

model is difficult to converge during the training 

process. In Figure 7 (b), the improved model has a 

fast convergence rate in the first 20 iterations. After 

60 iterations, the curve gradually stabilizes and the 

final convergence value is 0.1. Figure 8 is the model 

accuracy before and after improvement. 



7 

DIAGNOSTYKA, Vol. 26, No. 1 (2025)  

Xu S, Cui W, Zhou X, Zhong Q, Wei Y, Wang Y.: Machine vision-based surface defect detection method… 

 

20 40 60 800 100
Epoch

A
c
cu

ra
c
y

0.800

0.775

0.750

0.725

0.700

0.675

0.825

Acc
Val_acc

0.850

(a) Before improvement

A
c
cu

ra
c
y

Epoch

1.0

0.9

0.8

0.7

0.6

0.5

20 40 60 800 100

Acc
Val_acc

(b) After improvement

 

Fig. 8. Comparison results of accuracy curves B&A  

model improvement 

 

Figures 8 (a) and (b) show the accuracy curves of 

VGG16 before and after improvement. In 8 (a), the 

curve change results indicate that the RA of the 

training set of the unimproved model is 82.3%, and 

the RA of the test set is 77.2%. In 8 (b), the improved 

model has an accuracy of 98.7% in the training and 

97.9% in the test. This study introduces the SE 

module and improves the VGG16 model using DC 

instead of traditional convolution. The improvement 

effect is shown in Figure 9.  

Figure 9 (a) shows the evaluation results of 

indicators before and after the introduction of the SE 

module. When the SE is added to the improved 

VGG16 model, the accuracy increases from 0.88 to 

0.964, the recall increases from 0.879 to 0.958, and 

the F1 score increases from 0.879 to 0.961. This 

indicates that the SE module is crucial for improving 

model performance. The SE module enhances the 

ability to learn useful features by dynamically 

adjusting the weight of feature channels, significantly 

improving accuracy, recall, and F1 score. Figure 9 (b) 

shows the evaluation results using DC indicators. The 

improved VGG16 model using DC achieves 

accuracy, recall, and F1 score of 0.964, 0.958, and 

0.961, while the indicators of traditional convolution 

are 0.897, 0.896, and 0.896, respectively. DC 

introduces spatial intervals in the CK, allowing the 

model to increase the receptive field without 

increasing computational complexity. In the results of 

Figure 9, the curves of each model have almost the 

same changes, which may be caused by the action of 

SE module. The SE module enhances the 

classification capability of the model by re-

calibrating the feature response of the convolutional 

layer, enhancing useful features and suppressing  
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Fig. 9. Indicator evaluation B&A model improvement 

 

unimportant ones. This enhancement effect is global, 

meaning that there is a significant improvement in all 

features. Consequently, the accuracy, recall, and F1 

score of the model improve simultaneously when 

detecting different types of weld defects, resulting in 

the curve of these indicators becoming consistent. In 

addition, accuracy, recall and F1 scores are evaluated 

from different angles based on the same classification 

results. Accuracy measures the proportion of all 

predictions that are correct. Recall measures the 

proportion of all actual positive examples that are 

correctly identified. F1 scores are the harmonic 

average of accuracy and recall. A model’s 

performance improvement in one category is 

typically accompanied by a simultaneous 

improvement in all three indicators, and vice versa. 

Therefore, there is a certain correlation between these 

indicators, causing their curve changes to converge. 

Based on the above, the SE module enhances useful 

features and suppresses unimportant features by re-

calibrating the feature response of the convolutional 

layers. It provides a more detailed feature control 

mechanism for the model by learning the importance 

of each channel, thereby making the model more 

focused on useful features for WDD tasks and 

improving classification accuracy. DC allows the 

model to increase the receptive field without 

increasing additional computational costs. This 

method enables the model to capture a wider range of 

contextual information, which helps to better 

understand the complex textures and details in weld 

seam images. This is very meaningful for improving 

the accuracy of defect detection and reducing missed 

detection. 
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4.2. Improving the WDD performance of the 

model 

This study classifies five types of weld seams and 

compared them using three structures: ResNet, 

GoogleNet, and MobileNe. Among them, ResNet 

adopts a very deep network structure, in which each 

residual block is composed of two or three 

convolutional layers, and the input is directly 

bypassed to some layers and added to the output by 

short-circuit connection, so as to make training more 

efficient [23]. GoogleNet’s network structure is 

relatively deep, but it also reduces the number of 

parameters by increasing the width of the Inception 

module. Each Inception module processes the input 

data through convolution kernels of different sizes 

and concatenates the outputs of various convolution 

layers to obtain information of different scales [24]. 

MobileNet introduced deep separable convolution 

and split the standard convolution operation into deep 

convolution and point-by-point convolution, which 

significantly reduced the computational effort [25]. 

Figure 10 shows the classification results of different 

structures. 

Figures 10 (a) to 10 (d) represent the classification 

results of improved VGG16, ResNet, GoogleNet, and 

MobileNe, respectively. The classification effect of 

Figure 10 (a) has a significant distinguishing effect, 

and different welding types have significant feature 

distinctions. Other methods have significantly higher 

misclassification or misidentification rates than 

VGG16 in classification. Table 1 shows the 

evaluation data of identification indicators for 

different welds using different models. 

Table 1 shows that the improved VGG16 performs 

the best in terms of accuracy for all types of welds, 

especially in identifying normal welds, cuts, and 

cracks, with an accuracy rate of over 96%. The 

improved VGG16 also has an advantage in terms of 

recall rate, especially in the detection of normal 

welds, with a recall rate of 98.7%. The improved 

VGG16 has the highest F1 score among all models, 

indicating a good balance between accuracy and 

recall. In Table 1, the ResNet performance is 

relatively weak, which may be due to its structure and 

parameter settings not being fully suitable for 

complex WDD tasks. GoogleNet and MobileNet 

perform well in certain types of weld seam detection, 

but their overall performance is still inferior to the 

improved VGG16. The improved VGG16 model 

significantly outperforms other models in terms of 

accuracy, recall, and F1 score when dealing with 

surface WDD tasks. This indicates that its 

improvement measures have greatly improved the 

overall performance. To further verify the 

performance in similar algorithms, the results of this 

study comparing its detection time, parameter 

quantity, and model size are listed in Table 2. 

In Table 2, the improved VGG16 has the highest 

number of parameters, which usually means that the 

model is more complex and may have stronger 

learning and representation abilities. The improved 

VGG16 model has the maximum size of 385MB, 

which is consistent with its high parameter count. 

Although the improved VGG16 has the most 

parameters and the largest model size, its detection 

time is the shortest, only 1.3 seconds. This indicates 
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Fig. 10. Classification results of different methods 
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Table 1. Evaluation results of indicators for different 

models 

Algorithm 

Nor

mal 

weld 

Sever

ance 
Hem Crack 

Burn-

throu

gh 

Accur

acy 

ResNet 0.743 0.709 0.694 0.606 0.714 

GoogleNet 0.857 0.806 0.842 0.657 0.714 

MobileNet 0.746 0.758 0.696 0.735 0.687 

Improved 

VGG16 
0.975 0.966 0.951 0.964 0.966 

Recall 

ResNet 0.687 0.733 0.625 0.666 0.833 

GoogleNet 0.825 0.833 0.800  0.766 0.733 

MobileNet 0.775 0.773 0.575 0.833 0.733 

Improved 

VGG16 
0.987 0.966 0.975 0.900  0.966 

F1 

score 

ResNet 0.714 0.721 0.657 0.635 0.768 

GoogleNet 0.840  0.819 0.820  0.707 0.758 

MobileNet 0.760  0.745 0.630  0.780  0.709 

Improved 

VGG16 
0.981 0.967 0.962 0.930  0.967 

 
Table 2. Comparison of different model parameters, 

sizes, and detection times 

Algorithm 
Number of 

parameters (M) 
Model 

Size (MB) 
Detection 
time (s) 

ResNet 25.58 97.9 1.5 

GoogleNet 5.94 40 1.8 

MobileNet 3.5 21.6 1.4 

Improved 

VGG16 
33.64 385 1.3 

 
its efficient optimization and computational 

performance. The improved VGG16 has the most 

complex model structure while maintaining a shorter 

detection time. This indicates that it has achieved a 

good balance between design and optimization, even 

though the model is large and has multiple 

parameters, it can still perform inference calculations 

quickly. To further compare the advancement and 

effectiveness of the research methods, the study 

adopts three mainstream methods for comparative 

analysis. These detection models include Faster 

Region-based CNN (Faster-RCNN), Kalman Filter 

and Convolutional Neural Networks (CNN-ENKF), 

and Gaussian Mixed Convolutional Autoencoders 

and Convolutional Neural Networks (GMCA-CNN) 

[26-28]. Meanwhile, Accuracy, Recall, F1 Score and 

Detection Time are used for evaluation, and the 

results are shown in Table 3. 

 
Table 3. Performance comparison of different 

algorithms 

Algorithm 
Accurac

y (%) 
Recall 

(%) 

F1 

Score 

(%) 

Detection 
Time (s) 

Faster-
RCNN 

94.2 93.5 93.8 2.5 

CNN-
ENKF 

96.1 95.4 95.7 2.2 

GMCA-

CNN 
95.5 94.8 95.1 1.8 

Improved 

VGG16 
97.9 98.7 97.9 1.3 

 

The results in Table 3 show that the accuracy of 

the improved VGG16 is 97.9%, which is 3.7%, 1.8% 

and 2.4% higher than that of Faster-RCNN, CNN-

ENKF and GMCA-CNN, respectively. In terms of 

recall rate and F1 score, the improved VGG16 is 

98.7%, which has the best performance among the 

four methods. In terms of detection time, the 

detection time of the improved VGG16 is 1.3s, which 

is reduced by 1.2s, 0.9s and 0.5s, respectively, 

compared with Faster-RCNN, CNN-ENKF and 

GMCA-CNN. The results show that compared with 

the current mainstream methods, the proposed 

method still has better performance, and its 

effectiveness and advanced nature have been verified. 

 
5. DISCUSSION 

 

On the JPEGWELD data set, the accuracy of 

training set and test set of the improved model 

reached 98.7% and 97.9%, respectively. Across 

different weld types, the improved VGG16 

demonstrated an accuracy and recall rate of more than 

96% and an average F1 score of 0.967. The improved 

VGG16 model was superior to the comparison model 

in both accuracy and recall rate. For example, the 

Faster-RCNN model had an accuracy rate of 94.2%, 

while the improved VGG16 model achieved 97.9%. 

In terms of recall rate, the improved VGG16 model 

was 98.7%, while the CNN-ENKF was 95.4%. This 

result showed that the improved VGG16 model 

performed well in the identification of various weld 

defects, especially in the detection of small defects 

and complex textures. Although the improved 

VGG16 model parameters and model size were 

larger, its detection time was the shortest, only 1.3s. 

This showed that the optimal design of the model 

maintained the superiority of complex model 

structure while ensuring high detection efficiency. In 

contrast, the detection times of ResNet and 

GoogleNet were 1.5s and 1.8s, respectively, and their 

accuracy and recall rates were not as good as the 

improved VGG16 model. The results showed that the 

introduction of SE module and cavity convolution 

significantly enhanced the feature extraction 

capability of the model. By re-calibrating the feature 

response of the convolutional layer, SE module 

effectively enhances the weight of useful features and 

supsets unimportant features. By expanding the 

receptive field, the cavity convolution technique 

enables the model to capture a wider range of context 

information, which is particularly important for 

complex texture recognition in WDD. In current 

studies, the high-precision optical detection system 

based on DL [5] and the semantic segmentation 

model based on u-net architecture proposed by Pratt 

et al. [7] have achieved good results in specific fields. 

However, these methods have some limitations in 

universality and adaptability and are difficult to be 

applied to different industrial environments and 

various types of defect detection. In contrast, the 

improved VGG16 model has excellent performance 

on a variety of weld defect types, and has strong 

versatility and adaptability, which can be applied to 
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weld inspection requirements in various industrial 

environments. 

 

6. CONCLUSION 

 

This study explored automated detection methods 

on the basis of MCV to meet the needs of industrial 

WDD. This study was based on VGG16 CNN and 

introduced SE module and DC technology for 

improvement to enhance the model’s capacity to 

extract weld defect features. Additionally, GLCM and 

various shape features were used for weld seam 

feature extraction, and a DL model adapted to WDD 

was constructed. Through the experimental results, 

the improved VGG16 model has achieved remarkable 

results in improving the accuracy and efficiency of 

WDD, which proves the application value of SE 

module and cavity convolution in optimizing CNNs. 

The proposed model improved the accuracy of defect 

detection, thus improving the quality and reliability of 

products. The efficient performance was suitable for 

industrial production lines that require real-time 

monitoring. At the same time, the error caused by 

manual detection was reduced. Although the 

improved VGG16 model performed well, it still had 

some limitations. The weld image may be affected by 

different lighting conditions during the acquisition 

process. For example, too bright or too dark light can 

make details of welds and defects difficult to capture, 

affecting the recognition accuracy of the model. Steel 

plate welds may exhibit different textures and 

physical properties depending on the material. Images 

of welds with different materials can pose challenges 

to the model’s ability to generalize, especially if there 

are not enough material types covered in the training 

data. The improved VGG16 model has high 

parameter number and model complexity due to the 

introduction of SE module and void convolution, 

which leads to its application in resource-constrained 

environments. Future research directions include 

optimizing the model structure, and further reducing 

the computational complexity and storage 

requirements of the model through model pruning, 

quantization and knowledge distillation. It is also 

possible to expand and diversify training datasets, 

including weld seam images of different materials 

and welding processes, to enhance the model’s 

generalization ability. This model has great potential 

for application in manufacturing quality control fields 

such as automotive industry, aerospace industry, 

construction engineering, and electronic product 

manufacturing. 
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