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Abstract 

To solve the problems of low efficiency and difficult feature extraction in traditional fault diagnosis 

methods, this study proposes an optimized Fuzzy C-Means clustering algorithm for diagnosing and analyzing 

gas turbine engine faults. This algorithm mainly introduces subtraction clustering, penalty factors, and data 

weights on the basis of the original fuzzy C-means clustering algorithm, thereby improving the generalization 

ability of the algorithm model and the credibility of the results. The optimized fuzzy C-means clustering 

algorithm had the highest level of accuracy value, with a value of 95.67%, which was 11.79% higher than the 

average accuracy of other algorithms. Meanwhile the optimized Fuzzy C-Means clustering algorithm improved 

the accuracy values of KNN, BP, SVM, and fuzzy C-means clustering algorithms by 19.65%, 12.26%, 3.55%, 

and 11.70%. The training set accuracy of the optimized fuzzy C-means clustering algorithm under four engine 

states was at the highest level, with an average improvement of 15.5%, 25%, 24%, and 16% in accuracy. The 

optimized fuzzy C-means clustering algorithm achieved an accuracy of 90.39% in the test set, with an average 

improvement of 16.13% in accuracy. The membership classification results indicated that the optimized fuzzy 

C-means clustering algorithm had a membership degree of 1.  
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1. INTRODUCTION 

 

With the development of China's industrial level, 

the performance of gas turbine engines is gradually 

improving. The increasingly complex working 

environment increases the probability of damage to 

key components such as turbine disks and blades of 

gas turbine engines, which in turn leads to increased 

operating and maintenance costs after being put into 

use [1-2]. Gas turbine engine is a power plant widely 

used in aviation, power and industrial fields. A gas 

turbine engine produces high temperature and high 

pressure gas by burning fuel, which pushes the 

turbine to rotate, thus outputting power. The 

performance of the engine is affected by a variety of 

factors, including intake conditions, mechanical 

condition, and combustion efficiency. 

Troubleshooting is a vital component of ensuring the 

reliability and safety of engines, preventing potential 

failures and performance degradation, and reducing 

downtime and repair costs. Gas turbine engine fault 

diagnosis refers to the reasonable judgment of the 

performance status and lifespan of each component 

based on the monitoring results after monitoring the 
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relevant working parameters of each component of 

the engine [3-4]. The types of faults in gas turbine 

engines can be roughly divided into vibration faults, 

gas path component faults, and control system faults, 

among which gas path faults are more common [5-

6]. The vibration faults mainly come from rotor 

unbalance, air flow instability, and gear meshing 

instability of transmission box. Gas path failure 

mainly refers to the type of failure caused by 

supercharger, turbine blade, intake pipe, and cooling 

system. Control system faults mainly refer to the 

types of faults caused by sensors, actuators, control 

system software, and electrical systems. As a widely 

used iterative clustering algorithm, Fuzzy C-Means 

clustering (FCM) algorithm has been applied by 

scholars in rapid diagnosis of diabetes and tumor 

classification at this stage, and has shown good fast 

classification ability and high accuracy [7-8]. In 

recent years, scholars have researched the problem 

of turbine engine failures. Sarwar et al. proposed a 

hybrid model of convolutional neural network and 

dimensionality reduction algorithm to improve the 

accuracy of fault information in gas turbine engines, 

and applied it to the operating conditions of gas 

turbine engines. The proposed hybrid model had 

high accuracy and an error of only 0.00173 [9]. 

Kordestani et al. proposed a parallel structure of 

Laguerre filter combined with fuzzy neural network 

based on heavy-duty gas turbine engines to predict 

the remaining service life of gas turbine engines, and 

applied it to estimate compressor fouling 

accumulation and filter defects. The established 

model had higher accuracy and estimation efficiency 

compared to other fault diagnosis and prediction 

models [10]. Xiong et al. used simulated annealing 

and genetic algorithm to optimize the simulated c-

means clustering algorithm to overcome the 

sensitivity of the FCM to local minimum problems, 

and applied the improved FCM to the diagnosis of 

bearing faults. The optimized FCM improved 

accuracy by 9.22%, and compared to the 

introduction of the model, the accuracy of fault 

diagnosis increased by 15.56% [11]. Cheng et al. 

proposed an intelligent online sensor fault diagnosis 

algorithm for gas engine fault diagnosis to obtain 

high-precision data on the working state of gas 

engines. On the relevant dataset, the research 

algorithm significantly reduced the diagnosis time 

compared to other algorithms, with a diagnosis time 

of only 0.233s and an accuracy rate of over 95% 

[12]. Feng K et al. proposed a method for calculating 

the blade frequency of gas turbine blade faults based 

on sparse harmonic product spectrum, which 

combines Vold Kalman filtering with adaptive 

parameter optimization process. This method can 

separate blade related vibration from magazine 

vibration even under strong noise conditions, and the 

results show that the model can discover potential 

faults of blades earlier and more accurately [13]. 

Fahmi A T W K et al. applied a long short-term 

memory model to turbine fault detection and used a 

threshold method to determine the likelihood of 

turbine faults. The results showed that the accuracy 

of the model for turbine vibration anomalies reached 

more than 86% [14]. However, these methods 

mostly focus on studying individual fault types and 

have not validated the credibility of relevant 

evaluation indicators. Therefore, to solve the 

problem of gas turbine engine fault diagnosis, this 

study proposes an improved FCM. The innovation 

lies in introducing subtraction clustering, data 

weight, and penalty factors for optimization on the 

basis of the original FCM, which can improve the 

generalization ability and credibility of the 

algorithm. Meanwhile, the improved FCM 

introduces subtraction clustering and other 

optimization modules to improve the algorithm's 

efficacy and reliability in fault data classification. 

 

2. METHODS AND MATERIALS 

 

2.1. Extraction of operating data based on gas 

turbine engine 

During the operation of a turbine engine, the 

measurement parameters recorded by sensors are the 

main data source for fault diagnosis. The relevant 

measurement parameters of a gas turbine engine can 

be divided into direct measurement and indirect 

measurement parameters. Direct measurement 

parameters are one of the components of state 

monitoring parameters, including engine inlet and 

outlet pressure, temperature, and fan material speed 

[15-16]. Indirect measurement parameters are 

obtained through calculations based on direct 

measurement parameters, mainly including engine 

flow rate, boost ratio, and fuel consumption rate. In 

light of the alterations observed in measurement-

related parameters, it is imperative to ascertain the 

associated changes in component performance, 

delineate the pertinent fault types, and formulate 

suitable troubleshooting plans and methods. The 

principle of gas turbine engine failure is shown in 

Fig. 1. 

Fig. 1 illustrates the logical relationship between 

influencing factors, changes in component 

performance, and the parameters to be tested. In the 

diagnosis of gas turbine engine faults, the strong 

coupling of data information and high noise content 

make it difficult to use relevant data fault 

information in engine fault diagnosis. Prior to 

conducting engine fault diagnosis, this study 

introduces Locality Preserving Projection (LPP) 

algorithm to reduce the dimensionality of turbine 

engine data and extract fault information. The core 

concept of LPP algorithm is based on a relatively 

rare Laplacian Eigenmaps (LE) algorithm, mainly 

for the purpose of dimensionality reduction [17-18]. 

In the initial space, the parameter dimension of 

dataset 1 2 3[ , , , , ]nX x x x x=   is defined as m , and 

correlation transformation is performed based on 

matrix   A    to   obtain   the   reduced   spatial   dataset
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Fig. 1. Schematic diagram of gas turbine engine gas circuit troubleshooting 

 

1 2 3[ , , , , ]nY y y y y=  . The final result is that the 

dimension m  of dataset Y  is smaller than the 

dimension m  of the original dataset. The calculation 

formula for improving the original algorithm and 

considering the global structure is shown in equation 

(1). 
2

2 ( )
( ) i

i j ij

ij

y y
y y W

n
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− −              (1) 

In equation (1), i  and j  respectively represent 

different data in X . ijW  represents a matrix 

composed of distance weight coefficients between i  

and j . To avoid eliminating scaling factors, the 

process of solving eigenvalues after adding relevant 

constraints is shown in equation (2). 
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In equation (2),   represents the eigenvalue. L  

represents the Laplacian matrix. D  represents the 

diagonal matrix. The maximum value of D , iiD , is 

taken. First, a data adjacency graph is constructed 

based on the K-Nearest Neighbor (KNN) algorithm. 

Due to the KNN algorithm's ability to adjust the 

value of k, it provides flexibility for the algorithm to 

adapt to different datasets and problem 

requirements. Moreover, the KNN model's ability to 

enhance with the increase of training samples makes 

it highly adaptable when dealing with dynamically 

changing datasets. The relevant schematic of the 

KNN algorithm is shown in Fig. 2. 

In Fig. 2, the green triangle at the center point can be 

classified as a pink circle or a blue square. After 

describing the nearest neighbor relationship based on 

the above algorithm, if either data ix  or jx  are 

within the closest region of another data k , then a 

relationship line is used to connect ix  and jx . Next, 

the weights of the corresponding relationship lines 

are selected and a thermonuclear function is 

introduced to calculate the weighted values of the 

connection lines between nodes, as shown in 

equation (3). 

Connection line

Connection line

 
 

Fig. 2. Correlation diagram of KNN algorithm 

2|| ||i jx x

t
ijW e

−

=                       (3) 

In equation (3), ijW  represents the weighted 

value, which is inversely proportional to the distance 

between ix  and jx , where t  represents the thermal 

constant. Finally, based on equation (2), the 

correlation matrix is calculated and information 

about the characteristic solution is obtained. Finally, 

the column vectors of the above matrices are 

combined to generate the transformation matrix A . 

 

2.2. Gas engine fault diagnosis based on FCM 

After extracting the fault characteristics of gas 

turbine engines through the LPP algorithm, the FCM 

is introduced to objectively diagnose the fault types 

of gas turbine engines. The likelihood of various 

fault types occurring is represented by membership 

indicators, and the fault diagnosis process is shown 

in Fig. 3. 

In Fig. 3, after improving the FCM, credibility 

judgment and fault type identification can be 

performed based on the clustering results. The 

algorithm is based on fuzzy theory, and each target 
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obtains membership degrees of different numerical 

values on this basis. This result can reflect the 

interpretability of a single target for a certain 

category. The essence of minimizing the value 

function lies in the sum of squared errors between a 

single data point and the classification. The 

expression of the value function is shown in equation 

(4). 

2

1 1

N c
m

m ij ij

i j

J u d
= =

=                    (4) 

In equation (4), mJ  represents the value 

function. N  represents the number of capacities. 

iju  represents the degree of membership. c  

represents the number of cluster center points. m  

represents the number of categories. d  represents 

the distance measure between data or between 

cluster centers and data. Based on the value function, 

the Lagrange function is constructed to determine 

the membership degree and cluster center point, and 

its function expression is shown in equation (5). 

2

1 1 1 1

( 1)
N c N c

m
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i j i j

J u dd u
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Based on equation (5), by taking the derivative of 

the membership function iju  and substituting it into 

1

1
c

ki

k

u
=

= , the relevant expression for membership is 

shown in equation (6). 
1
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In equation (6), after calculating the partial 

derivative based on the Lagrange function and 

removing non-zero coefficients, the equation based 

on the cluster center is shown in equation (7). 
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In equation (7), v  represents the cluster center. 

The type and quantity of gas turbine failures are 

unknown, and the location of the number of data 

points is uncertain. In view of this, this study 

introduces subtraction clustering combined with 

FCM to calculate data point density and determine 

the number of cluster centers, to alleviate the 

problem of inaccurate diagnosis due to parameter 

reasons. The core concept of subtractive clustering is 

that each sample in the dataset can be defined as a 

cluster, and the minimum cluster group is merged 

until a certain stopping condition is reached. 

Meanwhile, the density of the remaining data is 

corrected based on the point with the highest density, 

to avoid clustering in the same cluster of data [19-

20]. Based on the number and location of clusters in 

the dataset, the distribution of data can be 

characterized, and the indicator of correlation 

density is shown in equation (8). 
2

2
1

|| ||
exp || ( )

(0.5 )

n
i j

i

j a

x x
D

r=

−
= −           (8) 

In equation (8), ar  represents the neighborhood 

radius of the cluster center point, and the density 

contribution of data points outside the radius range 

of this point based on this point is 0, as expressed in 

equation (9). 

  1
min max || ||

2
a i k

k i
r x x= −          (9) 

After determining the density value according to 

equation (9), the size of the density values of each 

data point is compared to determine whether the 

maximum value satisfies the iteration condition. If 

the iteration conditions are met, the initial cluster 

centers and number are obtained. If it is incorrect, 

corrections are made. The iteration conditions and 

correction equation are shown in equation (10). 

1

2

2

|| ||
exp( )

(0.5 )
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ci
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i i ck

b

D

D

x x
D D D
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  (10) 
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Fig. 3. Framework diagram of troubleshooting process 
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In equation (10), br  represents the neighborhood 

range that must be corrected. After the center point 

correction is completed, other uncorrected data 

points are continued to be used as objects, and based 

on the iterative effect, the density values 

corresponding to the data points are ultimately made 

more stable. In response to the high degree of 

dispersion of data points within the gas turbine 

engine class and the strong distribution of data points 

between classes, this study introduces the 

contribution degree to divide different sample data 

based on the same class. Considering the problem of 

poor classification accuracy due to membership 

degree, there may be misclassification that affects 

the center position. Therefore, this study introduces 

data weight to evaluate the contribution of data of the 

same type [21]. After introducing data rights, the 

study praises or punishes the membership degree of 

the point by introducing a penalty factor to avoid the 

possibility of misclassification to other clusters. To 

amplify the contribution of individual data points to 

the classification results, a data weighted form is 

proposed, as shown in equation (11). 
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                  (11) 

In equation (11), im  represents the distance 

between the class center point and a single point. The 

objective function and corresponding cluster center 

points are shown in equation (12). 
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            (12) 

In equation (12), during the clustering process, 

noise points and irrelevant points are generally in a 

discrete state from the clustering center point. After 

introducing data weights, the magnitude of the 

change is small, and extreme changes may occur 

during the corresponding correction process, 

manifested as an increase in membership degree for 

those belonging to this category and a decrease in 

membership degree for those not belonging to this 

category. Therefore, in this study, a penalty factor is 

introduced and set to avoid the above situation, as 

shown in equation (13). 

1

1
| | 0.5

c

ij ij ip

j

u u or u
c


=

−        (13) 

In equation (13), ipu  represents the maximum 

membership value. When it is found through 

comparison that the numerical significance of a 

certain data point is higher than the membership 

values of other data points, or the numerical value of 

that data point is greater than 0.5, corresponding 

operations are performed according to the penalty 

factor, as shown in equation (14). 

1

(1 / )
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ip ip ij
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a u d d
=
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In equation (14), a  represents the penalty factor, 

and equation (15) is used to make relevant 

corrections to the membership degree. 
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In equation (14), a  represents the penalty factor, 

and equation (15) is used to make relevant 

corrections to the membership degree. 
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After introducing a penalty factor into equation 

(15), the optimized algorithm mentioned above is 

applied to the fault diagnosis of gas turbine engines. 

After collecting the raw data, pre-processing 

operations are performed using the LPP algorithm to 

map the high-dimensional data set to a low 

dimensional space through dimensionality 

reduction, making it easier to extract the relevant 

features of each data point. Due to the possibility of 

human factors affecting the research results, 

subtraction clustering is used to represent the 

original center point position, and then the data point 

features extracted by the LPP algorithm are 

segmented based on an improved fuzzy algorithm. 

Finally, in this study, the penalty factor 

transformation matrix is used to calculate the 

corresponding data weights. Data belonging to the 

same class can be iteratively controlled within a 

more appropriate range, and corresponding gas 

turbine engine failure models can be established 

based on all data points. The algorithm flow is shown 

in Fig. 4. 

In Fig. 4, first, based on equation (9), the ar  of 

each data point is obtained to determine the interval 

based on density data. Then, the density value 

corresponding to each data point is calculated, and 

whether the data point meets the corresponding 

stopping condition is determined. If it meets the 

condition, the corresponding initial cluster center 

point and number are obtained. If it does not meet 

the condition, the new neighborhood radius is 

adjusted and the new density index is recalculated. 

By combining the cluster center points with equation 

(6), the corresponding membership matrix is 

calculated, and then the data weight is calculated 

using equation (11). The objective function value is 

calculated using equation (12) and compared with 

the objective function value generated in the 

previous iteration. If it is less than  , stop. If it is 

greater  than   ,  the  penalty  factor a  is obtained 
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Fig. 4. Flowchart of fault diagnosis algorithm 
 

based on equation (14). Whether the correction 

conditions are met is compared. If the correction 

conditions are met, the cluster center points will be 

recalculated and iterated according to equation (15) 

after correction; If not satisfied, the cluster center 

will be recalculated directly. After the above 

operations, an improved FCM based gas turbine fault 

diagnosis model based on clustering centers can be 

obtained. The fault diagnosis process can be 

completed by inputting the corresponding raw data 

values during the detection process. 

 

3. RESULTS 

 

3.1. Performance analysis based on improved 

FCM 

This study utilized a degradation simulation 

dataset of turbofan engines for relevant experimental 

verification. All experimental environments were as 

follows: the operating system was window10, the 

processor was Intel (R) Core (TM) i5-9300H, and 

the GPU was NVIDIA Quadro M5000. Meanwhile, 

four other classic algorithms were introduced for 

comparison, including KNN algorithm (with 4 

neighbors), Backpropagation neural network (BP), 

Support Vector Machine (SVM), and FCM. The loss 

function curves and recall rates of the five algorithm 

models were shown in Fig. 5. 

In Fig. 5 (a), the improved FCM loss function 

showed a rapid decline rate and had been reduced to 

an extremely low level. Compared to other 

algorithms, although they also showed a downward 

trend, the loss function value did not converge to a 

very small value. The KNN, BP, and FCM models 

showed significant oscillations, while the SVM 

algorithm model did not exhibit oscillations, but the 

final convergence value of the improved FCM loss 

function was larger. In addition, the loss on the 

improved FCM dataset was significantly lower than 

the other four algorithms, indicating that the 

improved FCM can fit the training data well and 

effectively suppress overfitting. In Fig. 5 (b), the 

improved FCM has converged at 25 iterations, and 

the recall rate was close to 1. The final recall rates of 

the two FCM and BP algorithm models remained 

basically the same, while the recall rates of the other 

two algorithms converged to 0.9. The accuracy of the 

5 algorithm models was shown in Fig. 6. 
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Fig. 5. Comparison of loss function and recall 

rate of 5 algorithms 

 

In Fig. 6, the improved FCM had smaller intra-

group errors, while the other groups, especially BP 

and FCM, had larger intra-group errors. The 

improved FCM had the highest level of accuracy 

value, with a value of 95.67%. The average accuracy 

values of the other four algorithms were 77.85%, 

82.15%, 91.26%, and 84.26%, respectively, with an 
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average accuracy improvement of 11.79% compared 

to the previous methods. 
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Fig. 6. Violin plot for comparison of accuracy 

of five algorithms 

 

3.2. Fault diagnosis analysis of gas turbine 

engine based on improved FCM 

Based on the above dataset, four types of engine 

states were selected, including Normal State (NS), 

Adjustable Blended Valve (ABV), Import Total 

Temperature Indication (ITI), and Exhaust Gas 

Temperature Indication (EGTI). The training set 

corresponded to 100, 25, 25, and 25 states, 

respectively. The confusion matrices of the 5 

algorithm models for the training set are shown in 

Fig. 7. 

In Fig. 7, based on the five algorithms under 

normal conditions, the accuracy rates were 75%, 

85%, 80%, 94%, and 99%, respectively. The 

improved FCM had an average improvement of 

15.5% in engine accuracy under normal conditions. 

Meanwhile, the improved FCM had the highest level 

of accuracy for three types of faults, with an average 

improvement of 25%, 24%, and 16%. The 

experimental results confirmed that the improved 

FCM achieved the highest accuracy in all categories. 

100 sets of data were selected for the normal state 

and three types of fault states in the test set. Based 

on clustering theory and five algorithms, the 

dimensionality was reduced to two dimensions after 

normalization. The results of KNN, BP, and SVM 

dimensionality reduction were shown in Fig. 8. 

In Fig. 8 (a), the dimensionality reduction effect 

was the worst, and the distribution of the four engine 

states was relatively discrete. In Fig. 8 (b), the SVM 

algorithm performed well in clustering ITI fault 

types, but performed poorly on other engine fault 

types. In Fig. 8 (c), the BP algorithm generally 

performed well in reducing the dimensionality and 

clustering of EGTI fault states, but its clustering 

performance for other engine states was not ideal. 

Overall, the clustering performance of the three 

algorithms for the four engine states was poor. FCM 

was further compared with improved FCM, and the 

clustering effect is shown in Fig. 9. 

In Fig. 9 (a), FCM only had good clustering 

performance for EGTI and normal state types, and 

the clustering performance for the other two types 

was not ideal. In Fig. 9 (b), the improved FCM 

performed well in clustering all engine states. The 

results indicated that introducing subtractive 

clustering, penalty factors, and data weights based 

on FCM could improve the clustering ability of the 

original algorithm. The cross validation 

experimental results of 5 algorithms are shown in 

Fig. 10. 
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Fig. 7. Schematic diagram of the test centralized mixing matrix 
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Fig. 8. Schematic diagram of dimensionality 

reduction by KNN, BP and SVM algorithms 

 

In Fig. 10 (a), in the cross validation 

comparison chart, the improved FCM 

maintained the highest level of accuracy in 

each validation experiment, with average 

accuracies of 66.52%, 71.68%, 84.58%, 

74.26%, and 90.39% for the five algorithms, 

respectively. The improved FCM had an 

average accuracy improvement of 16.13% 

compared to the other four algorithms. In Fig. 

10 (b), the improved FCM had a smaller 

standard  deviation  compared  to  the  other 

groups, indicating a lower degree of traditional 

FCM, this study introduced subtraction 

dispersion within the group. Compared with the  
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Fig. 9. Schematic diagram of dimension 

reduction of FCM and improved FCM 

 

clustering, data weighting, and penalty factor 

optimization FCM to improve accuracy and reduce 

intra-group bias. The credibility of classification 

based on membership degree is shown in Fig. 11. 

In Fig. 11 (a), in the ABV state, the membership 

degree of the KNN algorithm for classifying fault 

data was only 0.26, indicating that the credibility of 

the KNN algorithm for ABV fault data was not high. 

The membership values of BP, SVM, and improved 

FCM were all 1, indicating that the three algorithms 

had extremely high reliability in classifying ABV 

fault data. In Fig. 11 (b), the FCM optimized under 

ITI state had the highest membership degree, with a 

value of 1. In contrast, the membership value of the 

improved FCM increased, which meant the 

reliability value increased. Further research on EGTI 

and the membership results under normal conditions 

is shown in Fig. 12. 

In Fig. 12 (a), under the EGTI state, the SVM 

algorithm had a certain regularity in classifying the 

membership degree of fault data. When the number 

of data sets was less than 50, the membership degree 

of SVM algorithm classification data fluctuated 

greatly, indicating that the credibility was high and 

low. When the quantity was greater than 50, the 

membership degree of SVM algorithm classification 
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data was 1, indicating that the credibility was at a 

high level. Meanwhile, the membership degree 

values of BP and improved FCM were both 1. In Fig. 

12 (b), for the data under normal conditions, the 

membership values of SVM and improved FCM 

reached 1, which was significantly higher than other 

algorithms. In summary, the improved FCM had the 

highest membership values in both normal engine 

conditions and three fault states, indicating a high 

level of reliability in classifying fault data. Finally, 

the study selected a typical gas turbine engine fault 

type and compared the reconstruction accuracy as 

well as error comparison of the above five 

algorithms for gas turbine engine gas path faults in 

practical applications. The results are shown in Table 

1.  

The
 fi

rs
t  t

im
e

The
 se

co
nd

 ti
m

e

The
 th

ird
 ti

m
e

The
 fo

ur
th

 ti
m

e

The
 fi

fth
 ti

m
e

60

70

80

90

100
KNN

BP

SVM

FCM

Improved FCM

(a) Plot of the results of the cross-validation 

experiments of the five algorithms

4

5

6

7

8

9

Algorithm type

st
an

da
rd

 d
ev

ia
ti
on

K
N

N
B
P

SV
M

FC
M

Im
pr

ov
ed

 

FC
M

(b) Comparison of the standard deviation 

of the five algorithms

A
cc

u
ra

ry
(%

)

 
Fig. 10. Cross-experimental validation comparison of 5 algorithms 

D
eg

re
e 

o
f 

af
fi

li
at

io
n

0.2
0 20 40 60 80 100

0.4

0.6

0.8

1.0 KNN

BP

SVM

FCM

Improved FCM

Data set/unit

(a)Categorical affiliation results plot for ABV data
 

0.9
0 20 40 60 80 100

0.92

0.94

0.96

1.0 KNN

BP

SVM

FCM

Improved FCM

0.98

Data set/unit

D
eg

re
e 

o
f 

af
fi

li
at

io
n

(b)Categorical affiliation results plot for ITI data
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Fig. 12. Affiliation classification results for EGTI and NS classification 

 
Table 1. Comparison of accuracy and error of gas 

turbine engine gas circuit fault reconstruction 

Algorithm 

type 

Reconstruction accuracy 

(%) 

MA

E 

KNN 80.65 4.99 

BP 78.45 5.96 

SVM 86.54 5.28 

FCM 91.54 2.68 

Improved 

FCM 98.47 1.09 

 

Table 1 shows the comparison of the 

reconstruction accuracy as well as the error value of 

each algorithm for gas turbine engine gas circuit 

faults. The reconstruction accuracy value of the 

improved FCM algorithm was the largest, with a 

value of 98.47% and an average improvement of 

14.18% over the reconstruction accuracy of the 

remaining four algorithms. At the same time, the 

improved FCM algorithm had the smallest Mean 

Absolute Error (MAE) value. The results showed 

superior performance in the diagnosis of typical fault 

types in gas turbines under real operating conditions. 

The study further compared the diagnostic accuracy 

of the above algorithms for air circuit faults, bearing 

faults, and starting faults. The results are shown in 

Table 2. 

 
Table 2. Comparison of accuracy for three fault types 

Algorithm 

type 

Air line 

failure 

Bearing 

failure 

Starting 

fault 

KNN 70.69% 71.54% 69.87% 

BP 75.78% 78.58% 74.58% 

SVM 84.58% 81.45% 83.59% 

FCM 89.55% 88.59% 87.69% 

Improved 

FCM 98.47% 94.58% 96.58% 

 

Table 2 compares the diagnostic accuracy of the 

algorithms for the three fault types. The results 

showed that the improved FCM had the highest 

diagnostic accuracy for the three types of faults, at 

98.47%, 94.58%, and 96.58%, respectively. 

Compared with the other four algorithms, the 

accuracy has increased by an average of 18.32%, 

14.54%, and 17.64%. This indicated that in practical 

applications, the improved FCM had a higher 

diagnostic accuracy for typical gas turbine faults. 
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4. DISCUSSION 

 

In the experimental results, the improved FCM 

achieved an accuracy of 90.39%, an average 

improvement of 16.13% compared to the other four 

algorithms. The recall rate results indicated that the 

improved FCM converged at 25 iterations, with a 

recall rate close to 1. The final recall rates of the two 

FCM and BP algorithm models remained basically 

the same, while the recall rates of the other two 

algorithms converged to 0.9. The accuracy value 

results showed that the improved FCM had the 

highest level of accuracy value, with a value of 

95.67%, which was 11.79% higher than the average 

accuracy of other algorithms. Meanwhile, the 

improved FCM improved the accuracy values of 

KNN, BP, SVM, and FCM algorithms by 19.65%, 

12.26%, 3.55% and 11.70% respectively. The 

improved FCM accuracy under four engine states 

was at the highest level, with an average 

improvement of 15.5%, 25%, 24%, and 16% in 

accuracy. Among them, the improved FCM 

improved the correctness of KNN, BP, SVM, and 

FCM algorithms by 24%, 14%, 19%, and 5% under 

normal type. The membership classification results 

indicated that the improved FCM had a membership 

value of 1 in all four engine states. Xiong et al. 

proposed a novel simulated c-means clustering 

algorithm based on simulated annealing and genetic 

algorithm for the diagnosis of bearing faults. The 

new algorithm solved other problems associated 

with fuzzy clustering algorithms while including 

initial cluster centroid sensitivity and convergence to 

local minima. In addition, the simulation results 

could be used as a classification criterion for 

identifying several bearing fault types. The results 

showed that the improved FCM improved the 

accuracy by 9.22%, and compared with the 

introduced model, the accuracy of fault diagnosis 

increased by 15.56%, which was consistent with the 

results of this study [11]. Cao et al. used an improved 

FCM for software fault location, and introduced four 

methods including Tarantula to evaluate the 

effectiveness of the proposed FCM. The results 

showed that the improved FCM had a higher level of 

accuracy compared to other algorithms. In terms of 

accuracy test case recognition, the improved FCM 

had lower false positive and false negative rates, 

which was consistent with the credibility results of 

fault data classification based on membership 

evaluation in this study [22]. Arneja T's research 

summarized the types and factors of engine failure, 

and reduced the risk of gas turbine engine through 

effective fault analysis methods [23]. In terms of 

engine fault diagnosis types, the research focused on 

the overall fault diagnosis of gas turbine engines, 

including vibration fault, gas path fault, and starting 

fault, which had a wider application range. 

Meanwhile, the diversity of fault types involves 

mechanical and thermal aspects, etc., while relevant 

literature are limited to bearing fault and inverter 

fault types, and their application range has certain 

limitations. The possible reason is that the improved 

FCM algorithm introduces optimization measures 

such as subtraction clustering, which leads to 

differences in fault type diagnosis of gas turbine 

engines. In summary, the improved FCM algorithm 

proposed in the research shows significant 

advantages in the fault diagnosis of gas turbine 

engines. 

 

5. CONCLUSION 

 

In this study, the FCM is first used as the basis 

for fault diagnosis of gas turbine engines. 

Subtractive clustering, data weighting, and penalty 

factors are introduced to optimize it. After 

comparing the performance with classic KNN, BP, 

SVM, and basic FCM, it is shown that the proposed 

improved FCM algorithm exhibits significant 

superiority in accuracy, precision, recall, and other 

aspects. Secondly, the results based on the confusion 

matrix indicate that the improved FCM exhibits the 

highest level of accuracy among the four types of 

engine states. Combining the results of membership 

degree correlation, it indicates that the improved 

FCM has a high level of accuracy in determining 

engine fault types, and it has a high level of 

credibility. The research offers the potential for more 

precise fault diagnosis in engine reliability, as well 

as reduced maintenance costs and an extended 

engine lifespan. Furthermore, the enhanced FCM 

algorithms have the potential for cross-domain 

application in fields such as power systems. 

Although the improved FCM proposed in the study 

has shown excellent superiority in gas turbine engine 

fault diagnosis, the faults that occur during actual 

turbine engine operation may be of multiple types 

coexisting. The simultaneous occurrence of multiple 

faults may make feature extraction of relevant data 

points difficult, and the dimensionality reduction 

effect may also be affected, leading to deviations in 

the subsequent diagnostic process. Future research 

can further improve the fault diagnosis depth of the 

model and incorporate some uncommon fault 

operation data into the research scope, thereby 

deepening the generalization ability of the model. At 

the same time, more attention can be paid to the 

diagnosis of multiple failure modes, that is, 

diagnostic strategies in which there are multiple 

faults in the same engine. In addition, cooperation 

with experts in thermodynamics as well as 

mechanical engineering on the failure mechanisms 

of gas turbine engines could be aimed at further 

optimizing the fault diagnosis algorithms. 
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