
Article citation info:  
Luo X, Ning J, Wu M. Design and analysis of wind turbine fault diagnosis system based on convolutional neural network. Diagnostyka. 

2025;26(1):2025113. https://doi.org/10.29354/diag/201334.  

1 

1 

  

DIAGNOSTYKA, 2025, Vol. 26, No. 1 
e-ISSN 2449-5220 

DOI: 10.29354/diag/201334 

  

 

DESIGN AND ANALYSIS OF WIND TURBINE FAULT DIAGNOSIS SYSTEM 

BASED ON CONVOLUTIONAL NEURAL NETWORK 
 

Xiaoli LUO 1, * , Jinye NING 2, 3 , Min WU 1  

1 Scientific Research Department, Hunan Electrical College of Technology, Xiangtan, 411101, China 
2 Institute of Big Data and Artificial Intelligence Application Technology, Hunan Electrical College  

of Technology, Xiangtan, 411101, China 
3 School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan City,  

411201, China 
* Corresponding author, e-mail: 17369221972@163.com 

 
Abstract 

Wind turbines are apt to diverse faults during long-term operation in natural environments, which affect 

their power generation efficiency and lifespan. Therefore, based on convolutional neural networks, gradient 

descent method was introduced to optimize their parameter training. Meanwhile, synchronous compressed 

wavelet transform was utilized to enhance the fault signal's time-frequency information. The fault detection 

correlation operation was optimized through Pearson correlation coefficient. Finally, a new type of fan fault 

detection model was proposed. The average fault detecting accuracy of this model was the highest at 98.98%, 

the average loss value was the lowest at 0.08%, and the average time consumption was the shortest at 16.52s. 

The minimum mean square error for detecting inner and outer ring pitting of fan bearings was 0.016 and 0.018, 

respectively. As a result, the proposed new model performs excellently in terms of accuracy and reliability in 

fault detection, with detection accuracy generally superior to other existing models. This model can 

significantly improve wind turbine fault detection, reduce false alarm and false alarm rates, and provide 

effective guarantees for wind turbines' stable operation. 

 

Keywords: convolutional neural network, wind turbines, fault, bearings, synchrosqueezed wavelet 

transform 

 

1. INTRODUCTION 

 

The global energy demand's continuous growth 

and environmental protection awareness's 

enhancement have made wind turbines a key 

equipment for converting wind energy into 

electricity. The reliability and safety of their 

operation are worthwhile for wind farms' stable 

operation [1-2]. However, due to long-term 

operation in complex natural environments, wind 

turbines are susceptible to various external factors, 

leading to frequent component failures. This not only 

increases maintenance costs, but also seriously 

affects wind turbines' power generation efficiency 

[3-4]. In recent years, many researchers both 

domestically and internationally have explored this 

issue. Cui et al. attempted to develop a new system 

for real-time detection of turbine faults in wind 

turbines. After combining Reliawind classification 

method and recurrent neural network, the team 

proposed a threshold control time detection method. 

This method effectively detected the operational 

risks of wind turbine operation and reduce false 
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alarms [5]. After combining the thinking methods of 

virtual synchronization and power synchronization, 

Arasteh et al. proposed a new wind turbine fault 

detection model to improve the efficiency of unit 

fault detection under different wind power grid 

connection conditions. This method performed 

better than traditional models in performance 

evaluation during three-phase symmetrical faults [6]. 

Wu and Ma found that with the increasing 

installation of onshore and offshore wind turbines, 

achieving effective state monitoring became 

increasingly important. To this end, the team 

proposed a new data-driven wind turbine fault 

detection model by combining long short-term 

memory networks and other tools. This model 

performed more effective detection on turbines, with 

an accuracy of up to 94% [7]. 

In addition, with the developing artificial 

intelligence techniques, Convolutional Neural 

Network (CNN), as a powerful deep learning model, 

has obvious results in fields such as image and 

speech recognition. Applying CNN to wind turbine 

fault diagnosis can automatically extract fault 
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features and improve diagnosing accuracy and 

efficiency by analyzing a large amount of historical 

and real-time monitoring data. After combining time 

series analysis and CNN, Rahimilarki et al. put 

forward a novel fault detection and classification 

means for wind turbines to enhance the existing 

technology of wind turbine fault detection and 

classification. This method had a high efficiency in 

fault detection of onshore and offshore wind 

turbines, with a detection error of less than 2.3% [8]. 

Xu et al. put forward a weighted multi-voting fault 

diagnosing model after incorporating multi-scale 

CNN and other methods to address the insufficient 

accuracy of intelligent models for diagnosing actual 

fan bearing faults. The average F1 score of this 

model was 97.12%, which was higher than the 

existing advanced methods [9]. Guo et al. found that 

with the developing smart grids, wind power's 

capacity connected to the grid gradually enhanced, 

making wind turbines' stable operation extremely 

challenging. Therefore, the team proposed a parallel 

multi-task fault diagnosis method after combining 

CNN. Compared with existing methods, the 

proposed method enhanced diagnostic accuracy by 

about 20% and had higher detection stability [10]. 

In summary, traditional fault diagnosing methods 

lean upon experience and rule libraries, which not 

only have low efficiency but also have strong 

subjectivity and high misdiagnosis rates. In recent 

years, many researchers have also proposed wind 

turbine fault detection methods using recursive 

neural networks and other theories, while fully 

utilizing CNN and its modified algorithms for wind 

turbine fault detection. These methods can to some 

extent solve wind turbines' fault detection. However, 

due to the variety of fault types, detection is greatly 

affected by environmental and other factors, 

resulting in a need for improvement in detection 

efficiency. Therefore, this study innovatively 

introduces Synchrosqueezed Wavelet Transform 

(SWT) to optimize fault signals. The clarity and 

resolution of signal features are improved through 

time-frequency domain reconstruction and 

compression. Pearson Correlation Coefficient (PCC) 

is used to enhance the correlation judgment of signal 

features, further optimizing fault detection 

performance and reducing false positives and false 

negatives. This research contributes to further 

improving fault detecting accuracy, reducing 

reliance on expert experience, lowering maintenance 

costs, and extending equipment's serving life. This 

research aims to provide new technical support for 

wind turbines' intelligent operation and 

maintenance. 

 

2. METHODS AND MATERIALS 

 

Firstly, a fault detection model for fan bearings is 

constructed using basic CNN. This can enable CNN 

to automatically extract fault features from 

component operation monitoring data and 

automatically diagnose component faults based on 

the extracted fault features. After completion, the 

study optimizes the feature signal time domain using 

SWT to address the insufficient sample data of wind 

turbine faults. Finally, a new improved CNN fan 

bearing fault detection model is proposed. 

 

2.1. Wind turbines' fault detection based on 

convolutional neural networks 

As an important renewable energy equipment, 

wind turbines have been widely used worldwide. As 

a key component of wind turbines, the operation 

status of bearings is directly related to the entire wind 

turbines' normal operation and service life [11-12]. 

Bearing failure not only leads to equipment 

shutdown, increases maintenance costs, but may also 

cause serious safety accidents, causing huge 

economic losses to wind farms. Therefore, the study 

introduced CNN, a deep learning detection network. 

It is a type of feedforward neural network that 

includes convolutional computation with a deep 

structure. It can extract sensitive feature information 

and input it into a classifier for diagnosis and achieve 

different data preprocessing [13]. The entire CNN 

consists of three layers. Figure 1 is a schematic 

diagram of convolution and pooling operations. 
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Fig. 1. Schematic diagram of CNN 

convolution and pooling operations 

 

Figure 1 (a) shows the convolution operation. 

Figure 1 (b) presents the pooling operation. The 

convolutional layer applies multiple convolutional 

kernels, namely filters, to locally perceive and 

extract features from these input data. The pooling 

layer reduces data dimensionality and computational 

complexity through down sampling, while 

preserving the main features [14]. The fully 

connected layer classifies or regresses the extracted 

features. By stacking several convolutional and 

pooling layers, CNN can gradually learn advanced 

features of the data and complete target recognition 
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and detection. The convolution operation is 

represented by equation (1). 

𝐶𝑐𝑛 = 𝑓(𝑋 ∗𝑊𝑐𝑛 + 𝑏𝑐𝑛)              (1) 

In equation (1), 𝑓  means a convolutional layer 

activation function. 𝑋 refers to the input data. 𝑊𝑐𝑛 

refers to the convolutional kernel’s weight. 𝑏𝑐𝑛 

refers to the convolutional kernel’s bias. The 

calculation of pooling operation is represented by 

equation (2). 

𝑎 = [

2 3 0 3
1 4 4 3
5 6 4 3
1 0 0 1

] 

𝑎 [
4 4
6 4

]
𝑎𝑣𝑒

[
2.5 2.25
3 2

]
𝑚𝑎𝑥

   (2) 

In equation (2), 𝑎𝑚𝑎𝑥  represents the maximum 

pooling value, which means dividing the listed 

numbers in 𝑎 into four equal parts: top, bottom, left, 

right, and then selecting the maximum value from 

each part in order to obtain 𝑎𝑚𝑎𝑥 . 𝑎𝑎𝑣𝑒  represents 

the average pooling value, which means dividing the 

listed numbers in equation EE into four equal parts: 

top, bottom, left, right, and then taking the average 

value of each part to obtain 𝑎𝑎𝑣𝑒 . The calculation of 

the fully connected layer is represented by equation 

(3). 

𝑦 = 𝑓(𝑊 ⋅ 𝑥 + 𝑏𝑐)                 (3) 

In equation (3), 𝑊 refers to the weight matrix. 𝑥 

refers to an input value. 𝑏𝑐  represents bias. 𝑦 

represents output. 𝑓(_) represents an activation 

function. The most commonly used classification 

and diagnostic method for CNN in practical testing 

is to determine the occurrence of faults by 

monitoring residuals. The error diagnosis between 

the predicted and actual results is expressed as a cost 

function, which is Cross Entropy Loss Function 

(CELF), represented by equation (4). 

𝐻(𝑝, 𝑞) = −∑ 𝑝(𝑥)𝑥 𝑙𝑜𝑔 𝑞 (𝑥)        (4) 

In equation (4), 𝐻(𝑝, 𝑞) refers to the difference 

between the probabilities of 𝑝 and 𝑞. 𝑝(𝑥) refers to 

the target distribution. 𝑞(𝑥) refers to the predicted 

distribution. CELF is a relatively complex function 

and also a multivariate function. 𝑝(𝑥) and 𝑞(𝑥) are 

both multiple variables. Additionally, the key to 

optimizing CNN parameters lies in optimizing the 

function between each neuron node receiving or 

outputting to the next node, which is called the 

activation function. The usually optimal method is 

Gradient Descent (GD) [15]. This time, the objective 

function is defined as 𝐴(𝜔)  to find the global 

minimum value, which can be represented in  

Figure 2. 

Global 

minimum

Slope

Initial weight

( )A 

  
Fig. 2. Gradient descent method 

 

In Figure 2, the quickest way to reach the global 

lowest point from the initial weight position is to 

take the partial derivative of the steepest point, 

which is called gradient. By taking partial 

derivatives multiple times, when a minimum 𝐴(𝜔) 
is reached, an optimal solution can be obtained. In 

summary, a wind turbine bearing fault diagnosing 

model is constructed by combining CNN in Figure 

3. 

In Figure 3, the entire fault detection model can 

be divided into data preprocessing and CNN 

detection modules. Among the data preprocessing is 

to take the input data as the time series vibration 

signals of the wind turbine operation state, after 

preprocessing, the input matrix size is 128x128, 

where the rows represent the time series and the 

columns represent the eigenfrequencies collected by 

different sensors. The data is normalized to ensure 

that the input data eigenvalues are between 0 and 1, 

which reduces the interference of outliers on the 

model.  After  three   preprocessing   steps,   namely 
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Fig. 3. CNN wind turbine bearing fault detection model 
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cleaning, conversion, and integration, GD performs 

parameter learning. After completion, wind turbine 

fault classification is achieved through CELF. On the 

other hand, the characteristic frequency data of the 

initial fan operation are inputted and processed by a 

three-layer convolutional network for data 

convolution, pooling, and other operations. After 

completion, GD also performs parameter learning. 

Finally, wind turbine fault classification is uniformly 

achieved through CELF. The classification results of 

two fault detections are output. The authenticity is 

judged based on the loss function and accuracy to 

determine the best detection result. 

 

2.2. Optimization of fault diagnosis models for 

large amounts of fault feature data 

The above content has completed the 

construction of a basic CNN fan fault detection 

model. In wind turbines' operation, there used to be 

very limited real data available for model training, 

which resulted in low diagnostic accuracy [16-17]. 

Therefore, the study first analyzes the failure 

mechanism and characteristics of mechanical 

components in wind turbines' transmission system. 

Figure 4 is the on-site diagram and structural 

schematic diagram of wind turbines' bearing 

components. 

(a) On-the-spot picture

 
a) On-the-spot picture 

(b) Simplified schematic structure

Pitch bearing

Spindle bearing

Gearbox bearings

Generator bearings

Yaw bearing
 

b) Simplified schematic structure 

Fig. 4. On-site diagram and structural 

schematic diagram of wind turbine bearing 

components 

 

Figure 4 (a) shows the on-site view of wind 

turbines' bearing components. Figure 4 (b) shows the 

structure of wind turbines' bearing components. 

These bearing components are divided into spindle, 

generator, pitch, yaw, and gearbox bearings [18]. 

The main shaft bearing is the most critical, 

responsible for the load-bearing of the hub and 

blades. The influencing factors during operation are 

more complex, making it difficult to replace the 

damaged bearing. In the failure or damage, the 

periodic operation data of bearings are generally 

collected by multiple sensors. The study installed 

four high-precision vibration sensors at key 

components of the wind turbine, which were 

installed at the main shaft bearing, generator bearing, 

gear box and yaw bearing. These locations are able 

to effectively collect the mechanical vibration 

signals generated by the WTGs during operation, 

ensuring comprehensive coverage of fault 

characteristics. The general spindle bearing faults 

are divided into inner and outer rings, rolling 

element, and cage faults [19]. The characteristic 

frequencies of various types of faults are represented 

by equation (5). 

{
  
 

  
 𝑓1 =

𝑁

2
(1 +

𝑑𝑏

𝐷
𝑐𝑜𝑠 𝛼)𝑓𝑟

𝑓2 =
𝑁

2
(1 +

𝑑𝑏

𝐷
𝑐𝑜𝑠 𝛼)𝑓𝑟

𝑓3 =
𝐷

𝑑𝑏
(1 −

𝑑𝑏

𝐷
𝑐𝑜𝑠 𝛼)2𝑓𝑟

𝑓4 =
1

2
(1 −

𝑑𝑏

𝐷
𝑐𝑜𝑠 𝛼)𝑓𝑟

         (5) 

In equation (5), 𝑓1 , 𝑓2 , 𝑓3 , and 𝑓4  refer to inner 

ring, outer ring, rolling element, and cage faults' 

characteristic frequencies, respectively. 𝑁  and 𝑑𝑏 

refer to the quantity and diameter of rolling 

elements, respectively. 𝛼 represents a contact angle. 

𝐷  refers to the bearing diameter. 𝑓𝑟  represents the 

bearing rotation frequency. Due to the various load 

factors of the spindle bearings, there is also signal 

interference during operation. Simple directional 

detection cannot meet the requirements. In addition, 

after a sudden failure, the natural vibration frequency 

of the bearing will be affected by impact pulses, such 

as inner and outer rings' frequency suddenly 

changing from thousands of hertz to tens of 

thousands of hertz. The inner and outer rings' 

frequency variation is represented by equation (6). 

𝑓𝑛 =
𝑛(𝑛2−1)

2𝜋(
𝐷

2
)2√𝑛2+1

√
𝐸𝐼

𝑀
            (6) 

In equation (6), 𝐸  represents the material’s 

elastic modulus. 𝑀 refers to the mass per unit length. 

𝐼 refers to the cross-section’s inertia of the ring. 𝑛 

refer to the vibration order. If the spindle bearing 

uses steel balls, its natural frequency is represented 

by equation (7). 

𝑓𝑏𝑛 =
0.848

𝑑
√
𝐸𝐼

2𝜌
                  (7) 

In equation (7), 𝑑  represents the steel ball's 

diameter. 𝜌  represents its density. If a local fault 

occurs suddenly, the frequency measured by the 

sensor at the main shaft bearing will change from 

sinusoidal vibration to a short-term, frequency 

increasing vibration. However, if there are multiple 

faults, the characteristic frequencies will 

superimpose, causing a single vibration signal to 

weaken. Therefore, SWT is introduced to enhance 

the density and energy of the original signal 

characteristic frequencies. This method was 

proposed by Daubechies et al. in 2011 [20]. The 

main idea is to redistribute the coefficients of 

wavelet transform to the estimated instantaneous 

frequency, usually manifested as the derivative of 

time. Figure 5 shows the transformation method of 

SWT. 
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Fig. 5. The transformation principle of SWT 

 

Figure 5 (a) shows the synchronous compression 

transformation of SWT signals based on frequency. 

Figure 5 (b) shows the synchronous compression 

transformation of SWT signals over time. Where the 

brown pattern is the original time-frequency signal 

and the green pattern is the time-frequency of the 

signal after SWT transformation. Each synchronous 

compression method can sharpen the time-frequency 

representation and maintain the signal energy state. 

This makes the frequency components of the signal 

independent of each other, without the phenomenon 

of frequency modulation or divergence. The 

vibration signal's continuous wavelet transforming 

of wind turbine rolling bearings is represented by 

equation (8). 

𝑊𝑥(𝑎, 𝑏; 𝜓) = ∫𝑥(𝑡)𝑎−1/2𝜓(
𝑡−𝑏

𝑎
)𝑑𝑡      (8) 

In equation (8), 𝑊𝑥(𝑎, 𝑏; 𝜓)  represents signal 

𝑥(𝑡)  's wavelet system spectrum. 𝜓  represents a 

mother wavelet function. 𝑎−1/2  represents the 

standardized constant. 𝑎  and 𝑏  refer to scale and 

time shift factors. At this point, the calculation of 

SWT is represented by equation (9). 

𝑇𝑥(𝜔𝑙 , 𝑏) =
1

𝛥𝜔
∑ 𝑊𝑥(𝑎, 𝑏;𝜓)𝑧𝑘𝑧𝑘|𝜔𝑥(𝑎,𝑏)−𝜔𝑙|≤

𝛥𝜔

2

 

(9) 

In equation (9), 𝜔𝑙  represents a specific 

frequency. 𝑧𝑘 represents discrete scale. 𝑘 represents 

the quantity of scales. The discretization of 

frequency and scale is represented by equation (10). 

{
𝛥𝜔 = 𝜔𝑙 − 𝛥𝜔𝑙−1
𝛥𝑧𝑘 = 𝑧𝑘 − 𝛥𝑧𝑘−1

                (10) 

After discretization is completed, the time-

domain reconstruction of the feature signal can be 

performed through the SWT of reversible 

transformation. The reversible transformation is 

represented by equation (11). 

{
𝑓(𝑡) = 2𝑅𝑒[

1

𝐶𝜙
∑ 𝑇𝑥(𝜔𝑙 , 𝑏)𝛥𝜔𝑙 ]

𝐶𝜙 = ∫
𝜓∗(𝜉)

𝜉
𝑑𝜉

∞

0

   (11) 

In equation (11), 𝐶𝜙  represents a finite value. 

𝜓∗(𝜉) represents the conjugate Fourier transform of 

wavelet functions. After continuous wavelet 

transform of the signal, SWT compresses and 

rearranges the wavelet coefficients in the time-

frequency domain, resulting in a clearer time-

frequency expression of the signal. In addition, PCC 

was introduced to distinguish between two signals 

more clearly and avoid overlap. Two signals’ PCC is 

represented by equation (12). 

𝑐𝑜𝑟𝑟_𝑐𝑜𝑒𝑓 = 
∑ (𝑥𝑝𝑖−𝑥

−
𝑝)(𝑦𝑝𝑖−𝑦

−
𝑝)

𝑛
𝑖=1

√∑ (𝑥𝑝𝑖−𝑥
−
𝑝)2

𝑛
𝑖=1 √∑ (𝑦𝑝𝑖−𝑦

−
𝑝)2

𝑛
𝑖=1

   (12) 

In equation (12), 𝑥𝑝𝑖  and 𝑥
−

𝑝  represent the data 

point and mean value of vector 𝑥𝑝, respectively. 𝑦𝑝𝑖 

and 𝑦
−

𝑝 represent the data point and mean value of 

vector 𝑦𝑝 . In summary, based on the previously 

proposed CNN wind turbine bearing fault detection 

model, a new intelligent fault diagnosing structure is 

finally put forward combined with SWT signal data 

optimization and PCC correlation judgment for wind 

turbines. Figure 6 shows the model process. 
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Fig. 6. Process of intelligent fault diagnosis model for new wind turbines 
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In Figure 6, firstly, vibration signals are collected 

by sensors installed at various locations of the wind 

turbine. Time-frequency distribution is calculated by 

SWT to divide the dataset, which can be separated 

into training and testing sets. Next, some signal data 

from a training set are used as input to set CNN 

parameters and initialize this network. For example, 

the convolutional layer uses convolutional kernels of 

size 3×3, with a total of 64 convolutional kernels set 

for extracting local features; the pooling layer uses 

maximum pooling with pooling kernels of size 2×2. 

ReLU is used as an activation function after each 

convolutional layer, which helps the network to 

introduce nonlinear features. The CNN model 

contains a total of three convolutional layers and two 

pooling layers, and finally, fault classification is 

performed by a fully connected layer. The 

architecture of the entire CNN model is an input 

layer, 3 convolutional layers, 2 pooling layers, and a 

fully connected layer with a total depth of 6 layers. 

Then, the training set propagates forward to calculate 

the error, uses GD to update the parameters, and then 

backpropagates until the error is calculated. During 

the process, fault classification is achieved using 

CELF. If the training reaches the maximum round at 

this time, the trained CNN is exported. Finally, fault 

diagnosis is performed on the input test set. If the 

training does not reach the maximum round, the 

CNN parameter initialization is returned. 

 

3. RESULTS 

 
Firstly, an experimental environment was 

established to verify the intelligent fault diagnosis 

model of this new wind turbine. The model 

parameters were set and ablation, loss function, and 

multi-indicator tests were conducted. In addition, 

these three types of fault classification detection 

performance of this new model was tested on a real 

wind turbine operation test bench and evaluated 

using error indicators. 

 

3.1. Performance testing of intelligent fault 

diagnosis model for new wind turbines 

A suitable experimental platform was established 

to verify the newly proposed intelligent fault 

diagnosis model for wind turbines. The CPU is Intel 

Core i7-9700. The GPU is NVIDIA GeForce RTX 

1660s. The operating system adopts Windows 10, 64 

bit. The convolutional layer has a step size of 16, the 

pooling layer has a step size of 2, the optimizer uses 

Adam, the batch is 128, and the iteration is 15. The 

data sampling frequency is 53000Hz, the motor's 

rated speed is 1520r/min, and the power frequency is 

80Hz. Each type of fault data has a sample size of 12 

and a sample length of 1 second. A total of 500 data 

after 40 min of sampling are divided into training and 

test sets in the ratio of 8:2. During the model training 

process, the training set is used for the optimization 

of model parameters, the validation set is used for 

the tuning of hyper-parameters, and the test set is 

used for the final evaluation of model performance. 

In this case, the ablation test assesses the relative 

importance of each module by gradually removing 

key components of the model, such as the 

simultaneous compressed wavelet transform, 

Pearson's correlation coefficient, and gradient 

descent method, and observing the change in the 

model performance. The final improved CNN fault 

detection model was validated through ablation 

testing with detection accuracy as the indicator in 

Figure 7. 

Figure 7 (a) shows the improved model's ablation 

test results in the training set. Figure 7 (b) presents 

the improved model's ablation test results in the test 

set. For stability, after combining GD, SWT, and 

PCC, the improved CNN fan bearing fault detection 

was stable at around 99%.  According to the test set 
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Fig. 7. The ablation test results of improved 

CNN fault detection model 

 

data, the average accuracy of fault monitoring for 

individual CNN modules was about 96%. After GD, 

SWT, and PCC optimization, the overall model's 

fault detection accuracy increased to 98.5%. This 

indicated that each module positively promoted the 

overall model functionality. In addition, the study 

took the loss function as the testing indicator and 

introduced popular fault detection models for wind 

turbines of the same type. The loss function is one of 

the key metrics for model optimization, which 

measures the gap between the model's predicted 

results and the actual labels. They include Support 

Vector Machine-based Wind Turbine Fault 

Detection Model (SVM-WTFD), Random Forest-
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based Wind Turbine Fault Detection Model (RF-

WTFD), Autoencoder-based Wind Turbine Fault 

Detection Model (AE-WYFD), and Long Short-

Term Memory Network-based Wind Turbine Fault 

Prediction Model (LSTM-WTFP). Figure 8 shows 

the test results. 

Figure 8 (a) presents SVM-WTFD and the 

proposed model's loss functions. Figure 8 (b) 

presents RF-WTFD and the proposed model's loss 

functions. Figure 8 (c) presents AE-WTFD and the 

proposed model's loss functions. Figure 8 (d) 

presents LSTM-WTFD and the proposed model's 

loss functions. In the comparison of four fan fault 

detection models, they all had similar loss function 

values to the proposed model in the later stage. The 

loss function can reflect a model's detecting quality. 

If the value is small, the fault detection accuracy 

is high. By comparison, the other three models’ loss 

function values in the early stage were all 14. The 

proposed model had the highest value of only 8, 

which tended to 5 after stable operation in the later 

stage. The above models were continued to be tested 

using average accuracy, average loss, average time 

consumed, precision (Precision), recall (Recall) and 

F1 value as metrics. Among them, the average 

accuracy rate indicates the proportion of the model 

correctly classified in all the test samples, which is 

the basic index to measure the overall classification 

ability of the model; the average loss is used to 

evaluate the prediction error of the model. The 

smaller the value of the loss function, the closer the 

model's prediction results are to the true value; the 

F1 value is the reconciled average of the precision 

rate and the recall rate, which provides a balanced 

evaluation of them, and is particularly suitable for 

use in the case of imbalance between positive and 

negative class samples, and is used to 

comprehensively evaluate the model's classification 

performance. The test results are shown in Table 1. 

In Table 1, SVM-WTFD and LSTM-WTF 

performed average in two types of real wind turbine 

fault datasets. The accuracy, loss values, and running 

time between these two models and the proposed 

model had obvious differences. RF-WTFD and AE-

WTFD effectively improved the detection 

effectiveness through their respective optimization 

methods. The highest average detection accuracy 

was 95.27% and 95.83%, respectively. The lowest 

average loss values were 0.19% and 0.16%, 

respectively. The shortest average time consumption 

was 43.21s and 27.63s, respectively. The proposed 

model's average detecting accuracy was the upmost 

at 98.98%, the average loss value was the lowest at 

0.08%, and the average time consumption was the 

shortest at 16.52s. In addition, the comprehensive 

performance advantages of the proposed model are 

further demonstrated by introducing new evaluation 

metrics such as precision rate, recall rate and F1 

score. In comparison with other models, the 

proposed model also performs well in terms of 

precision rate and recall, reaching 97.12% and 

97.03% precision rate and 98.01% and 97.85% recall  
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Fig. 8. Test results of loss functions for 

different models 

 

rate on the two datasets, which are higher than the 

comparison models such as SVM-WTFD and RF-

WTFD. This indicates that the model is more 

effective in identifying the actual faults in the 
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detected fault samples and reduces the false alarms. 

In summary, the proposed new fan bearing fault 

detection model had certain reliability and 

effectiveness, whose detection performance was 

obvious in existing methods. 
 

3.2. Simulation testing of intelligent fault 

diagnosis model for new wind turbines 

The study conducted simulation tests on the 

motor bearing operation database of Case Western 

Reserve University to validate the ew fan bearing 

fault detection model's practical application effect. 

The motor power used in this motor test bench was 

1521W, and the sampling frequency was set to two 

types: 12kHz and 48kHz. The output position of the 

motor adopted a pair of torque sensors to collect the 

output data and monitor the real-time operation 

status of the motor under different scenes. The fault 

implantation method adopted single point damage of 

electrical discharge machining. The complexity of 

the implanted fault varied and was located at 

different positions of the motor bearing. General 

motor bearing faults can be divided into three types: 

inner and outer rings and rolling element faults. 

During the construction of the dataset, the study 

collected operational data for both healthy and faulty 

bearings. The faulty bearing data includes inner ring 

pitting, outer ring pitting and rolling element failure, 

and the faulty bearing accounts for 60% of the total 

data, while the proportion of healthy bearings is 

40%. Such data distribution can be closer to the 

actual wind turbine operation state, and it helps to 

improve the model's sensitivity to fault conditions 

and enhance its generalization ability in detecting 

faults. Table 2 shows the specific experimental 

motor parameters. 

In Table 2, under the same data collection 

location, collection frequency, and motor bearing 

speed conditions, different types of faults were 

generated, resulting in different fault diameters. 

However, as the bearing speed increased, the fault 

diameter became larger. In addition, under the same 

collection location, sampling frequency, and speed, 

the fault diameter of rolling element pitting was 

significantly larger than that of inner and outer ring 

pitting. The research focused on non-pitting, rolling 

element pitting, and inner and outer ring pitting as 

the testing backgrounds. Popular fault detection 

models of the same type were introduced, such as 

Transfer Learning (TL), Current Monitoring (CM), 

and Time Domain (TD). Figure 9 shows the 

classification detection results of faults. 

 

 
Table 1. Test results of indicators for different models 

Data set Model 
Average 

accuracy/% 

Average 

loss/% 

Average 

elapsed 

time/s 

Precision/% Recall/% 
F1 

score/% 

NREL 

Wind 

Data 

SVM-WTFD 94.67 0.34 55.76 91.52 92.11 91.81 

RF-WTFD 93.21 0.27 51.54 90.12 91.34 90.72 

AE-WTFD 95.83 0.29 38.63 93.75 94.02 93.88 

LSTM-WTFD 91.74 0.16 31.57 89.52 89.64 89.58 

Our model 98.98 0.09 16.52 97.12 98.01 97.56 

CWS 

SVM-WTFD 96.84 0.27 59.67 94.21 94.95 94.58 

RF-WTFD 95.27 0.19 43.21 92.48 93.12 92.83 

AE-WTFD 93.22 0.16 28.79 91.58 91.67 91.62 

LSTM-WTFD 94.68 0.22 27.63 92.35 92.98 92.66 

Our model 98.93 0.08 18.21 97.03 97.85 97.44 

Table 2. Motor operating parameters table 

Collection location Speed (r/min) Fault type Fault diameter/mm Sampling frequency/kHz 

Driving end 1530, 1550, 1572 No No 48 

Driving end 1530 Outer ring pitting 0.177 48 

Driving end 1550 Outer ring pitting 0.356 48 

Driving end 1572 Outer ring pitting 0.524 48 

Driving end 1530 Inner ring pitting 0.179 48 

Driving end 1550 Inner ring pitting 0.367 48 

Driving end 1572 Inner ring pitting 0.571 48 

Driving end 1530 Rolling body pitting 0.167 48 

Driving end 1550 Rolling body pitting 0.352 48 

Driving end 1572 Rolling body pitting 0.602 48 
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Fig. 9. Fault classification detection results of 

different modelsFigure 9 (a) shows TL's 

fault classification detection results 

 

Figure 9 (b) presents the fault classification 

detection results of CM. Figure 9 (c) presents the 

fault classification detection results of TD. Figure 9 

(d) presents the fault classification detection results 

of the proposed model. From Figure 9, it can be seen 

that the TL model and the CM model have lower 

fault classification accuracy, poor overall results, 

and obvious generalization problems when dealing 

with different working conditions, such as no pitting, 

rolling body pitting, inner ring pitting, and outer ring 

pitting. In particular, under multiple fault conditions, 

the two models have higher false alarm and omission 

rates, leading to significant deviations in the fault 

classification results. In contrast, the TD model 

improves in fault detection performance, but its 

stability and accuracy are still far less than the 

proposed model. In several fault categories, the 

classification results of the TD model are still not 

precise enough, and the detection ability of some 

weak faults is poor. The proposed model, on the 

other hand, successfully improves the fault feature 

extraction capability by introducing SWT for time-

frequency information enhancement and PCC for 

fault correlation calculation. The model is able to 

effectively screen out the fault information with 

weak features, thus greatly improving the accuracy 

of fault classification and the generalization ability 

of the model, especially in the performance under 

complex working conditions. Finally, the study 

compared and tested the four models using Mean 

Squared Error (MSE) and Mean Absolute Error 

(MAE) as indicators in Figure 10. 

Figure 10 (a) shows the MSE test results of four 

models. Figure 10 (b) presents four models' MAE 

test results. As can be seen in Figure 10, the 

consistency of the detection results among all four 

models indicates that rolling body pitting is detected 

better than inner and outer ring pitting, and this trend 

is consistent with the numerical settings in Table 2. 

Specifically, all four models exhibited the lowest 

MSE and MAE values for rolling body pitting, 

followed by inner ring pitting, and the highest MSE 

and MAE values for outer ring pitting. Among these 

four models, the study of the proposed model 

showed the best performance in both MSE and MAE 

values. In particular, in the detection of rolling body 

pitting faults, the MSE and MAE of the proposed 

model are 0.013 and 0.028, respectively, which are 

significantly lower than the other models. The MSE 

and MAE values of inner ring pitting and outer ring 

pitting are also significantly lower than those of 

other models, which are 0.016 and 0.037, and 0.018 

and 0.047, respectively. This indicates that the 

proposed model has higher accuracy and reliability 

in the detection of different fault types, and 

especially outperforms other existing fault detection 

models in terms of its ability to recognize for minor 

faults. 
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Fig. 10. MSE and MAE of different models 

 

4. CONCLUSION 

 

In response to frequent faults caused by wind 

turbines operating in complex natural environments, 

this study was based on CNN and introduced GD, 

SWT, and PCC for fault feature enhancement and 

classification, respectively. Finally, the detection 

and optimization of wind turbine fault information 

were realized. In a training set, the new type of fan 
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bearing's fault detection was stable at around 99%. 

In a test set, this new fan bearing fault detection 

model's accuracy slightly decreased to 98.5%. 

Compared to other similar detection models, this 

new model had a maximum loss function value of 8, 

which tended to 5 after stable operation in the later 

stage, and the value maximally decreased by 6. In the 

indicator detection, the average detection accuracy 

of this new model was the highest at 98.98%, the 

average loss value was the lowest at 0.08%, and the 

average time was the shortest at 16.52s. In 

simulation testing, the new model maintained ultra-

high accuracy and stably classified and detected four 

working conditions: no pitting, rolling element 

pitting, and inner and outer ring pitting. The 

minimum MSE and MAE of rolling element pitting 

in this model were 0.013 and 0.028, respectively. 

The minimum MSE and MAE of inner ring pitting 

were 0.016 and 0.037, respectively. The minimum 

MSE and MAE of outer ring pitting were 0.018 and 

0.047, respectively. In summary, improving the 

CNN wind turbine fault diagnosis model has high 

reliability and effectiveness in practical applications, 

which can significantly enhance wind turbines' 

operational stability and reduce maintenance costs. 

However, the study has not yet included more fan 

faults for model detection. Subsequent research can 

consider expanding and incorporating more real fan 

operation fault data to verify the effectiveness of the 

model. 
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