
Article citation info:  

Goolak S, Gubarevych O, Yurchenko V, Kyrychenko M. A review of diagnostic information processing methods in the construction of 
systems for operating diagnostics of rotor eccentricity of induction motors. Diagnostyka. 2025;26(1):2025104. 

https://doi.org/10.29354/diag/202757.  

1 

11 

 
DIAGNOSTYKA, 2025, Vol. 26, No. 1 

e-ISSN 2449-5220 
DOI: 10.29354/diag/202757 

 

 

 

A REVIEW OF DIAGNOSTIC INFORMATION PROCESSING METHODS 

 IN THE CONSTRUCTION OF SYSTEMS FOR OPERATING DIAGNOSTICS  

OF ROTOR ECCENTRICITY OF INDUCTION MOTORS 

 

Sergey GOOLAK 1 , Oleg GUBAREVYCH 1, * , Victor YURCHENKO 1 ,  

Mykhailo KYRYCHENKO 2  

1 Department of Electromechanics and Rolling Stock of Railways, State University of Infrastructure  

and Technologies. Kyiv, Ukraine  
2 Department of Heat Motorering, Kyiv National University of Construction and Architecture (03307), Ukraine 

*Corresponding author, e-mail: oleg.gbr@ukr.net 

 

Abstract 

Induction motors are widely used in traction drives of rolling stock of railways. For timely detection of 

faults that may occur in an induction motor during operation, a functional diagnostics system is used. Thanks 

to such a system, it is possible to detect and prevent further development of a fault at the initial stage of its 

occurrence in real time. When developing a functional diagnostics system, it is important to select the most 

relevant method for processing diagnostic information for a specific type of damage. One of the most difficult 

to detect defects is rotor eccentricity. Rotor eccentricity is a consequence of a wide range of motor damages 

that must be monitored during operation. The paper offers an analysis of modern methods for processing 

diagnostic information that can be used to build a functional diagnostics system for the presence of rotor 

eccentricity in an induction traction motor and also provides recommendations for choosing a more effective 

method. 
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1. INTRODUCTION 

 

The reliable and trouble-free operation of even 

individual industries depends on ensuring the reliable 

operation of the most widely used type of electric 

machines, induction motors. This is especially relevant 

in the transport sector, where induction motors with a 

short-circuited rotor are gaining significant momentum. 

Sudden failure of electric drive mechanisms during the 

operation of transport equipment leads to disruption of 

logistics and related economic losses. In addition, the 

violation of established logistics tasks leads to a 

decrease in the competitiveness of even certain types of 

transport. 

In such conditions, research on the establishment 

and development of methods for controlling the 

development of manifestations and deviations from 

normal operation in the design elements of electric 

motors of transport systems acquire special relevance. 

During the operation of induction motors in the drives 

of vehicles, in addition to the occurrence of overheating 

and overloading phenomena, a number of external 
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influences on the modes of operation and factors of 

natural aging also act [1-3]. Under the influence of a 

whole range of such factors, various defects develop in 

electric motors, which, in the absence of monitoring 

systems or with later detection, can develop to an 

emergency stop with an increase in restoration costs 

[4]. 

Fig. 1 shows the averaged statistical data of the 

main types of damage to induction motors (IM), which 

have the most impact on further operation and can 

develop to the complete failure of the motor in the 

emergency mode [5-7]. 

The largest part of failures is caused by damage to 

the stator, where up to 70% [3, 8] is due to inter-turn 

short circuits in the phase of the stator winding, and the 

remaining part to the breakdown of the insulating 

materials of the stator package design and the violation 

of inter-circuit connections. When inter-turn short 

circuits occur in the stator winding, an asymmetric 

rotating field occurs, which is accompanied by the 

occurrence of vibration of the unit. 
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Bearing damage for induction motors can account 

for 12-20% of failures, and for some types of traction 

motors it can reach up to 40%. The main manifestation 

of bearing damage is an increase in the radial gap, 

which causes vibration [7]. 

The unevenness of the air gap is caused by abrasive 

wear of the bearings, deformation of the end shields of 

the machine, errors in assembly and installation after 

repair, etc. This leads to one-sided magnetic attraction 

and, as a result, the occurrence of electromechanical 

vibration [5]. 

When operating motors with a damaged short-

circuited winding structure, pulsation of currents 

occurs in the stator with a slip frequency, which creates 

vibration and affects the torque of the motor. At the 

same time, the frequency of rotation of the rotor 

fluctuates even with changes in small loads. 

The rest shown in Fig. 1, damage to the motor, 

including those discussed above, have a structural 

origin and, in the event of occurrence, leads to the 

appearance of mechanical vibration of the motor 

elements. 

Thus, all considered types of motor damage during 

its operation are accompanied by the appearance of 

vibration, which can be used for diagnostic monitoring 

[9]. 

A number of damages shown in Fig. 1 cause the 

appearance of eccentricity of the rotor, the detection of 

the nature of which is the most difficult and currently 

relevant issue when conducting diagnostics of electric 

motors. Rotor eccentricity is the most common 

mechanical failure of an induction motor. The presence 

of eccentricity leads to one-sided magnetic attraction 

and increased bearing wear. The engagement of the 

rotor with the stator can lead to a violation of the 

packages of the structure of the rotor and stator or 

overheating, which can lead to a breakdown of the 

disturbed layer of insulation in the friction zone. 

According to various sources, eccentricity accounts for 

20 to 40% of IM failures [5, 7]. 

The nature of eccentricity is different, but it leads to 

similar negative consequences. Eccentricity of the rotor 

can appear due to low-quality manufacturing or repair 

of motors, as a result of operational factors with a 

violation of the geometry of the motor design, as a 

result of bearing wear, shaft deflections, etc. Common 

for the occurrence of this type of damage is the 

possibility of continued operation of the motor without 

its immediate failure. However, eccentricity leads to a 

decrease in the reliability and durability of the 

induction motor, which progress over time and affect 

the reduction of technical and economic and 

operational parameters. 

When operating such a motor, a one-sided magnetic 

attraction is created, which affects, of course, a 

decrease in efficiency and, accordingly, an increase in 

heating and contributes to a decrease in starting torque. 

Additional higher harmonics that arise affect a number 

of electromagnetic parameters of the motor [10, 11]. 

For these reasons, it is important to detect this 

malfunction at the earliest possible stage of its 

appearance and development. In the practice of 

research, two types of eccentricity are considered: static 

and dynamic. Static eccentricity is caused by the shift 

of the motor rotation axis relative to the stator package 

boring axis, that is, the eccentric position of the rotor in 

the stator boring. The most common causes of static 

eccentricity are load imbalance, vibrations, 

misalignment of shafts, sharply changing loads and 

overloads, malfunction of bearings, etc. 

Dynamic eccentricity is caused by the displacement 

of the axis of the outer surface of the rotor relative to 

the axis of its rotation and is accompanied by the 

beating of the rotor, which occurs due to the forces of 

one-sided magnetic attraction as a result of poor repair 

or manufacturing defects. 

The dynamic eccentricity is usually much smaller 

than the static eccentricity and for determination during 

motor operation for the purpose of current diagnosis of 

the motor condition is not of decisive importance. 

Therefore, to diagnose the most common damages 

that cause eccentricity in an electric motor, it is 

advisable to conduct a study of static eccentricity 

indicators, which carry more diagnostic information. 

The relative eccentricity can be determined by the 

formula (%): 

100%,
а

= 


  (1) 

where a – the displacement of the rotor axis from the 

stator axis; 

δ – the size of the air gap between the rotor and the 

stator at a symmetrical position of the rotor. 

The general practice of monitoring the eccentricity 

of the motor is the relative eccentricity parameter itself 

(1). 

The main methods for diagnosing rotor eccentricity 

include the following methods: 

- vibration measurements; 

- direct measurement of the air gap; 

- current. 

 
Fig. 1. Distribution of types of induction motor damage 
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Vibrodiagnostic methods have become widely 

used to determine a number of damages to motor 

elements, however, they have not been used to 

determine the causes of eccentricity of transport 

motors. 

One of the reasons is the need to use a certain 

number of sensors, the lack of reference values of 

vibration manifestations of a number of damages and 

low accuracy during the operation of the mechanism 

with additional vibration sources. In addition, 

vibration methods do not always provide the 

necessary diagnostic information [12]. 

The method of direct measurement of the air gap 

at several points is used in the repair and 

maintenance of motors and requires partial 

disassembly of the electric motor. At the same time, 

the electric motor must be stopped for a long time 

and conditions of access to the end zone of the 

magnet wire, which excludes the use of the method 

during operation. 

Current methods can provide the most effective 

diagnosis of the occurrences and causes of 

eccentricity. Current methods are based on the 

analysis of the main electrical and magnetic 

parameters of the motor, namely phase currents, 

phase voltage, power consumption, flux linkage and 

induction of the magnetic field in the air gap during 

the operation of the equipment [13, 14]. However, 

for the full use of current methods, a number of 

separate studies are needed to establish the 

diagnostic parameters for assessing the type and 

degree of the motor defect. 

Timely detection of eccentricity of the rotor and 

recognition of the cause of its occurrence during 

motor operation without stopping the equipment is 

an urgent diagnostic problem. which contributes to 

increasing the reliability and durability of the use of 

induction motors in vehicles. In addition, ongoing 

monitoring and determination of the causes of rotor 

eccentricity ensure the safety and economy of 

transportation [15]. 

In this work, an analysis of the methods of 

processing diagnostic signals for detecting the 

eccentricity of the rotor of induction motors is 

carried out in order to determine the diagnostic 

strategy for establishing the reasons for their 

appearance during the period of operation of the 

equipment for predicting the resource of trouble-free 

operation. 

The purpose of this article is to analyze existing 

methods of processing diagnostic information that 

can be used in the construction of a functional 

diagnostics system for monitoring eccentricity in 

induction traction motors of rolling stock.  

The research contributions of the article are as 

follows: 

- for the construction of a system of functional 

diagnostics for monitoring the presence of 

eccentricity in induction traction motors of 

rolling stock, the choice of a diagnostic method 

was substantiated; 

- as a result of the analysis of the spectral 

components of phase currents of an induction 

motor in the presence of different degrees of 

defect, the choice of diagnostic features for 

monitoring eccentricity in induction traction 

motors was substantiated; 

- Based on the conducted analysis of operational 

factors, the features of obtaining selected 

diagnostic features for monitoring eccentricity in 

induction traction motors were established; 

- Based on the peculiarity of obtaining the selected 

diagnostic features for monitoring eccentricity, 

an analysis of the methods for processing 

diagnostic information was performed, which 

can be used to build a system for functional 

diagnostics for monitoring the presence of 

eccentricity in induction traction motors of 

rolling stock. 

 

2. ANALYSIS OF DIAGNOSTIC SYMPTOMS 

USING CURRENT METHODS OF 

CONTROLLING THE PRESENCE OF 

ECCENTRICITY IN AN INDUCTION 

MOTOR 

 

In works [16, 17] it is shown that current methods 

are the most effective for diagnosing damage to an 

induction motor as part of the drive. To build a 

system of operational diagnostics (as part of the 

drive), diagnostic symptoms should be determined, 

which will be used to control the presence of 

eccentricity in IM. 

Eccentricity is characterized by several 

diagnostic symptoms that are manifested in changes 

in the amplitudes of characteristic harmonics in the 

magnetic flux, current signals, and vibrations [18, 

19]. These characteristic harmonics are: 

• rotor slot harmonics (RSH); 

• side harmonics of the rotor around the supply 

frequency; 

• doubled supply frequency and side harmonics 

around it. 

In the current signal [20-22], in the presence of 

increased eccentricity, the amplitudes of RSH 

harmonics change, which are determined by the 

following equation [23]: 

( )
1

1 1
,

RSN s B d ws

s B ws s d

s
f f l N n

p

s s
f l N f n

p p

 −
=      = 

 

 − −
=        

 





 (2) 

where fs – stator supply voltage frequency; 

l=1,2,3,...– any positive integer; 

nd=0 – with static eccentricity; 

nd=1,2,3,... – with dynamic eccentricity (nd is the 

order of eccentricity); 

p – the number of pairs of poles; 

s – slip of electric motors; 

NB – total number of rotor bars; 

ws – the sequence of time harmonics of the stator, 

which are present in the power source that drives the 
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motor. ws takes odd values for current signals and 

axial magnetic flux [24-26]. 

Expression (2) consists of two terms. The left 

term is the frequency of passage of the rotor grooves 

frS, which is determined by the formula: 

1
.rS s B ws

s
f f l N

p

 −
=     

 
   (3) 

The right term defines the frequencies of the side 

harmonics fr from the rotor channel passage 

frequency, which are the frequency components of 

the subsynchronous type of rotor speed [27]. The 

frequencies of these harmonics are determined by 

the expression [28]: 
1

,r s

s
f f

p

−
=    (4) 

Lateral harmonics of the rotor around the supply 

frequency are a sign of dynamic eccentricity [28]. 

These harmonics are inherent in current signals and 

magnetic flux. The frequencies of these harmonics 

are determined according to the following 

expression: 

,sbr s sf f k f=      (5) 

where k =1,2,3,... – any positive integer. 

Works [29-31] give an analytical expression for 

the current signal at eccentricity, in which side 

harmonics of the rotor appear around the 

fundamental harmonic: 

( ) ( )( )

( ) ( )

01 2

2 ,

ecc m r

s

I k I cos f t k

cos f t k k

=  +      + 

     +

  

 
(6) 

where Iecc(k) – value of the phase current of the stator 

of the IM with eccentricity; 

Im – amplitude of phase current of IM stator without 

eccentricity; 

η(k) – harmonics of the power supply of the stator of 

ІМ; 

k=1,2,…,N  – serial number of the count; 

N – total number of measurements; 

Δt – discretization step; 

 – the eccentricity modulation coefficient, which is 

directly proportional to the eccentricity degree. 

For further analysis of methods of processing 

diagnostic signals, simulations of IM current signals 

were performed in the following states: (a) in good 

condition, (b) with eccentricity. 

The motor parameters presented in Table 1 [32, 

33] were used in the simulation. Based on the 

specified IM parameters, the following was 

calculated: synchronous frequency of rotation, slip, 

as well as the frequency of fault signatures. The 

obtained data are shown in Table 2. In the 

MATLab/Simulink software environment, the phase 

current signals of the IM stator were modeled for the 

following cases: in the absence of eccentricity (α=0); 

with eccentricity equal to 5% (α=0.05); with 

eccentricity equal to 10% (α=0.1); with eccentricity 

equal to 15% (α=0.15); with eccentricity equal to 

20% (α=0.24); with eccentricity equal to 25% 

(α=0.25). Such defect levels were chosen for the 

purpose of investigating the possibility of detecting 

rotor eccentricity at an early stage. In order to take 

into account, the thermal processes occurring in IM, 

the simulation used the superimposition of "white" 

Gaussian noise. This is due to the fact that thermal 

noise is "white" Gaussian noise [34, 35]. When 

modeling the signal-to-noise ratio, SNR=30 dB was 

selected. SNR determines the maximum amplitude 

of the noise, according to the expression 

10

30

20 20

20

17.8,

10 10

m

n

m m
n SNR

I
SNR log

I

I I
I A

 
=   

 

 = = =

 (7) 

The time history plots of the simulated signals 

are shown in Fig. 2. 

From the analysis of the plots (Fig. 2), it follows 

that the stator phase current signal is an amplitude-

modulated signal with a carrier frequency equal to fs, 

a modulation frequency equal to fr, and a modulation 

depth equal to α. 

Table 1. Parameters of an induction motor 

Parameter Designation Unit Value 

Capacity Pnom kW 1200 

Power frequency fsnom Hz 55.8 

Rated stator phase voltage Usmon V 1080 

Rated stator phase current Isnom A 450 

Nominal rotation frequency nr rpm 1110 

The number of pairs of poles p r. u. 3 

The initial phase of the signal φ0 rad 0 

 
Table 2. Parameters of the simulated system 

Parameter Expression Unit Value 

Synchronous frequency of IM rotation ns=fs·60/p rpm 1116 

IM slip s=(ns-nr)/ns - 0.005376 

Rotor speed fr=nr/60 Hz 18.5 

The frequency of the left-side harmonic of the rotor 

from the power supply frequency, which characterizes 

the presence of eccentricity, at k=1 

fess1=fs-k·fr Hz 37.3 

The frequency of the right-side harmonic of the rotor 

from the power supply frequency, which characterizes 

the presence of eccentricity, at k=1 

fess1=fs+k·fr Hz 74.3 
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a) b) 

  
c) d) 

  
e) f) 

Fig. 2. Time history plots of the simulated signals are shown in Fig. 2 of stator phase currents in the absence and 

presence of eccentricity: 

a) α=0; b) α=0.05; c) α=0.1; d) α=0.15; e) α=0.2; f) α=0.25 
 
 

 

 
 

 
 

 

 

For the stator current signal of phase A, the 

amplitude-frequency spectra of the stator current of 

phase A were calculated and plotted in the absence and 

presence of eccentricity (Fig. 3). 

As follows from the analysis of the amplitude-

frequency spectra shown in Fig. 2, using the obtained 

characteristics to establish the eccentricity degree of the 

rotor is a difficult task. Fig. 3 determines levels of 

subharmonics at different eccentricity degrees of the 

rotor. The results are summarized in Table 3. 

The analysis of the results presented in Table 3 

shows that the level of subharmonics can be used as a 

diagnostic parameter when monitoring the presence of 

rotor eccentricity even at an early stage of the 

development of a defect. As can be seen from the 

results presented in Table 3, thermal noise affects the 

value of subharmonics. This influence is manifested in 

the fact that the subharmonics are not symmetrical with 

respect to the frequency of the stator supply voltage. 
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a) b) 

  
c) d) 

  
e) f) 

Fig. 3. Amplitude-frequency spectra of the phase A stator current in the absence and presence of eccentricity: 

a) α=0; b) α=0.05; c) α=0.1; d) α=0.15; e) α=0.20; f) α=0.25 

 

Table 3. Values of subharmonics at different eccentricity degrees of the rotor 

Eccentricity degrees α [%] 
Amplitude of sub-synchronous type components Isa [A] 

left right 

0 0 0 

5.0 12.53 17.14 

10.0 28.94 33.62 

15.0 44.79 49.5 

20.0 60.64 65.39 

25.0 76.49 81.27 
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3. METHODS OF CURRENT DIAGNOSTICS  

OF INDUCTION MOTORS 

 

3.1 General information about methods of current 

diagnostics 

Diagnostic methods based on the analysis of the 

current flowing in the stator winding are based not only 

on the consumed power and electrical impedance of the 

winding, but also on the dependence on the 

electromotive force (EMF) induced by the magnetic 

field from the rotating rotor [36]. In other words, the 

stator winding is an element sensitive to rotor defects. 

The task of the analysis is to separate the stator current 

required for the rotation of the rotor from the additional 

current induced by the rotor itself in the event of its 

failure. 

One of the advantages of current diagnostic 

methods is the possibility of measuring the current 

remotely from the laboratory, as in some cases direct 

access to the machine is difficult. Also, in many 

systems, electric currents and voltages are measured in 

protection systems, which allows reduction of the costs 

of introducing current diagnostic methods into existing 

installations. 

The main disadvantage of current diagnostics is the 

complexity of existing signal processing methods. This 

difficulty is caused by the presence of a dominant 

harmonic component associated with the frequency of 

the power network, which is much larger than the 

harmonics caused by faults. 

 

3.2 Method of analysis of motor current signatures 

One of the most common current signal processing 

techniques is motor current signal signature analysis 

(MCSA) [36-38]. This method is based on the analysis 

of the spectrum of the phase currents of the stator, 

namely, the amplitudes of harmonics associated with 

malfunctions (signatures of malfunctions) are checked 

for exceeding the specified values. The transformation 

to the frequency domain is carried out using the fast 

Fourier transform (FFT). The FFT has a fairly low 

computational complexity [39, 40], which makes it 

suitable for implementation in control and diagnostic 

devices. 

Disadvantages of MCSA are related to the need for 

a long measurement sample and dependence on the 

motor slip value. The need for a long sample arises 

from the FFT property: the frequency resolution is 

directly proportional to the length of the sample. The 

required frequency resolution depends on IM slip, 

which can vary depending on IM power and load. In 

[41], it is noted that the required frequency resolution 

for recognizing the signatures of defects in the rotor 

rods is 0.01 Hz. This corresponds to a sample length of 

100 s. Using a sample of this duration presents the 

following challenges for continuous monitoring 

devices: high memory requirements and the need for 

stable operation during IM measurements. For 

example, traction motors of railway rolling stock are in 

unstable conditions for a long period of their operation. 

This leads to the appearance of quasi-asymmetric 

modes in the system of phase currents of the stator [42], 

which affects the reliability of the MCSA analysis 

results. 

As the IM load increases, the slip increases [43], on 

which the frequencies of fault signatures depend. For 

MCSA to work correctly, motor slip information 

should also be obtained to calculate fault signature 

frequencies. For this, an additional IM rotation speed 

sensor is required [41], based on the readings of which 

slip is calculated, or special algorithms for calculating 

the IM speed should be used [44, 45]. Both options 

increase the complexity of the system. 

Also, the MCSA disadvantages should include the 

effect of spectral leakage and picket fence effect, which 

is associated with the fact that when performing FFT, 

the received frequencies may not coincide with the 

frequencies of faults. In this case, the fault amplitudes 

decrease and it is difficult to use them as a diagnostic 

feature. 

To improve the FFT properties, a multi-frequency 

signal processing (MSP) technique was proposed in 

[46]. This technique is based on the use of decimation 

and interpolation and allows to get rid of the spectral 

leakage effect that MCSA has. The computational 

complexity of this technique is higher than that of FFT, 

as this technique requires performing FFT as many 

times as there are fault signatures to be investigated. 

The disadvantages of this technique, in addition to the 

absence of spectral leakage, coincide with the 

disadvantages of MCSA, since both approaches use 

FFT. 

 

3.3 Method of harmonic order tracking 

Harmonic Order Tracking Analysis (HOTA) 

methods [41, 47, 48], based on the tracking of order 

harmonics, make it possible to reduce the number of 

harmonics required for analysis, due to the construction 

of the spectrum not from the signal frequency, but from 

the ordinal number of fault signatures. FFT is used to 

calculate the spectrum. Different algorithms are used to 

convert the stator phase current into the rotor 

coordinate system in different HOTA modifications. In 

order to perform the specified conversion, in [41], it is 

proposed to use a rotation angle sensor, which is 

synchronized with current measurements, to measure 

the angular velocity. The yaw angle sensor is also used 

to calculate slip. 

The HOTA disadvantages are: 

• the need for an additional angular position sensor; 

• low slip requires a long sample because. an FFT is 

used; 

• the method may give incorrect results in the presence 

of a constant load change. 

 

3.4 Parametric methods 

The MUSIC (Multiple Signal Classification) and 

ESPRIT (Estimation of the Signal Parameters) methods 

given in [49-51] are adapted for solving problems of 

diagnostics and detection of malfunctions of electric 

machines. These methods are based on the division of 

the measured signals into the subspace of the model 
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component and the noise subspace [52, 53] and allow 

detecting stator faults, defects in rotor rods and rings, 

eccentricity, bearing defects, and others. With the help 

of these methods, it is possible to transform the time 

signal into the frequency domain and, with a low 

signal-to-noise ratio, detect the frequency components 

associated with malfunctions. 

The advantage of these methods is that a smaller 

number of readings is needed to ensure a high 

frequency resolution of the spectrum, for example in 

[54] it is stated that 256 readings are enough to detect 

defects in the rotor core. The disadvantages of these 

methods include high computational complexity [55, 

56]. 

 

3.5 Methods based on Park vectors 

One of the most effective and least computationally 

expensive algorithms for detecting IM faults is the 

method based on Park vectors (PVA) [57-59]. When 

using this diagnostic method, signals are analyzed in 

the time domain, not in the spectral domain. This 

method is used to detect the following malfunctions of 

three-phase IM’s: 

• asymmetry of the supply voltage [59, 60]; 

• eccentricity of the air gap [61, 62]; 

• interturn defects in the stator winding [51, 63]; 

• inconsistency of mechanical connections [64, 65]; 

• break in the phase rotor winding [66, 67]; 

• defects of short-circuited rotor rods and rings [51]. 

This method is used for motors powered directly 

from the network or through an inverter to detect both 

individual faults and their combinations. PVA allows 

detecting the presence of a malfunction, but does not 

allow identifying the type of malfunction [68]. To solve 

this problem, PVA modifications have been developed: 

- an extended approach based on Park vectors, in the 

English-language literature – Extended Park Vector 

Approach (EPVA) [69, 70]; 

- an approach based on a set of Park’s vectors [68]; 

- an approach based on basic transformations [49]. 

These approaches are combinations of PVA and 

FFT. EPVA is based on the fact that for the components 

of the Park’s vector, spectra are calculated using FFT, 

which are used to analyze fault signatures. This 

approach is similar to MCSA, but differs in that the 

components of the Park’s vector are calculated based 

on all components of the stator phase currents. This 

makes EPVA more comprehensive than MCSA. In 

addition, in MCSA it is often difficult to remove the 

fundamental supply frequency component from the 

current signal without distorting the fault signatures. 

EPVA does not have this problem, since the 

fundamental frequency component of the supply is 

automatically removed during the Park’s conversion. 

MPVA involves in first calculating the FFT spectra of 

the stator currents of IM phases, then signals are 

generated based on the amplitudes of fault signatures, 

which are separately analyzed using classical PVA. 

This approach allows to separately analyze the 

presence of certain malfunctions, present in a certain 

random combination, and the level of development of 

defects. The method of base transformations bases on 

the fact that if there is an angle of inclination of the 

ellipse, the hodograph of the Park’s vector is 

transformed from an orthogonal-elliptic basis to an 

orthogonal-circular one. After that, the angle of 

ellipticity is analyzed. The defect is identified on the 

basis of the obtained values of the angles of inclination 

of the ellipse and ellipticity. EPVA, MPVA and the 

method of basis transformations include FFT, so they 

inherit all the main FFT advantages and disadvantages. 

 

3.6 Prony method 

Methods of diagnosing IM malfunctions based on 

the modified Prony method are proposed in works [71-

73]. They are based on the Prony model, the fitting of 

which makes it possible to estimate the amplitudes of 

the characteristic frequencies associated with fault 

signatures. This approach allows the use of short 

samples of signals with a low sampling rate, since the 

sample length is determined by the order of the model, 

and the sampling rate is determined by the maximum 

frequency of the analyzed to be signal. Thus, in [71], 

the order of the model was chosen equal to 7, the 

corresponding sample length was 3 milliseconds. The 

advantages of this method are the absence of spectral 

leakage, as well as the possibility of tracking changes 

in the amplitudes of fault signatures, which allows 

these methods to be used both in stable and unstable IM 

operation modes. Solving the problem of optimal 

fitting, which is complicated by the presence of noise 

and other random components present in the original 

measured signal, is a necessary condition for using this 

method. These problems are the main ones that prevent 

the use of this approach in reliable systems for 

monitoring the IM technical condition. Separate 

solutions to these problems are proposed in works [71-

73]. Sophisticated preprocessing of the output signals 

using high-order band-pass filters to virtually 

completely remove all signal components except those 

stored for research is used in these solutions. In these 

works, the optimization task is solved using the method 

of least squares. The method of least squares has a high 

computational complexity, but due to the small number 

of calculations, this disadvantage is eliminated. Despite 

the fact that this group of methods is new and 

promising, the problems of choosing and justifying 

optimal fitting criteria and choosing the order of the 

model are open and unresolved. In works [74-76], the 

physical content of the Prony method was found and it 

was shown that it can be applied to highly correlated or 

so-called almost periodic data. If the influence of 

uncontrolled parameters becomes significant, the data 

is distorted, the memory between successive 

measurements weakens, and they become almost 

reproducible. In this case, the fitting function changes 

and it is necessary to use another function obtained in 

[75]. However, these approaches have not previously 

been sufficiently investigated in the tasks of monitoring 

and diagnosing the technical condition of motors. 

 

3.7 Methods of artificial intelligence 

Methods based on artificial intelligence (AI) are 

becoming more and more widespread. The following 
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main AI approaches are used for diagnosis and 

detection of IM malfunctions [77]: 

- neural networks; 

- fuzzy logic; 

- expert systems; 

- machine learning. 

These approaches do not depend on the system 

model and have a high level of generalization. Due to 

their independence, these methods can be used inside 

each other and/or use several methods combined in a 

combination. The requirement of a mandatory 

preliminary stage – training is a characteristic feature 

of these AI-based methods. For security purposes, a 

large volume of data is required for each condition to 

be detected and/or evaluated. AI methods are used in 

the process of decision-making and cluster analysis, 

while diagnostic features are pre-set. Usually, classical 

methods based on proven models are used to assign 

diagnostic symptoms. 

 

3.7.1 Neural networks 

Neural networks (NNs) are one of the AI 

approaches. NN is a structure of neurons, each of which 

performs simple arithmetic operations. NNs imitate the 

behavior of the human brain. The method of monitoring 

the technical condition of rolling bearings of an 

induction traction electric motor of locomotives is 

proposed in [78]. In this work, the task of classification 

was solved with the help of artificial NN’s. In [79], a 

method for detecting defects of the following defects is 

proposed: jamming of the electromechanical drive 

motor shaft, broken gear teeth, excessive clearance of 

the ball screw, and two internal leakage faults. The 

proposed method [79] uses multiple-scale analysis to 

construct basic wavelets and fast wavelet 

transformation to obtain diagnostic features. To make a 

decision, NN trained by the method of backpropagation 

of the error is used [79]. 

 

3.7.2 Fuzzy logic 

Fuzzy logic (FL) [80, 81] is one of the approaches 

included in the arsenal of AI methods. FL is a more 

powerful variation of traditional logic. Not only binary 

values such as true and false are used, but a much larger 

number of possible values. Thanks to this, the 

presentation of information becomes closer to human 

thinking. FL systems are able to process fuzzy input 

parameters using fuzzy "if" rules based on a priori 

knowledge. In the study [82], the FL is used to detect 

defects in the rotor, with the help of supplying the 

residual current of the stator to the FL input. In work 

[83], the diagnosis of rotor rod breakage in a wind 

turbine based on an induction generator with a short-

circuited rotor is investigated using a fuzzy logic 

system to analyze the power range of the stator 

currents. 

 

3.7.3 Expert systems 

Expert systems (ES) are systems that are able to 

fully or partially replace an expert specialist. ESs 

consist of a knowledge base, mechanisms of logical 

conclusions, and a subsystem of explanations [84]. The 

knowledge bases used to solve the tasks of IM control 

and diagnosis include: 

- information about IM nodes; 

- sensors; 

- software; 

- hardware resources, including the data collection 

environment and diagnostic algorithms. 

Development and training of ES is a complex, long 

and expensive process. In work [85], a knowledge base 

for ES was developed, intended for diagnosing the rotor 

of the IM state in continuous mode based on the 

instantaneous values of the stator current. The proposed 

knowledge base is organized as a two-level system. The 

first level is intended for initial diagnostics using 

MCSA, it is simpler and requires only a few parameters 

of the machine under test. The second level is activated 

when a defect is detected in the rotor by the first level. 

The second level allows to more accurately localize the 

defect and estimate the number of damaged rotor rods. 

The second level requires a detailed specification of the 

machine under test. In work [86], expert systems are 

used to diagnose the traction induction electric motor 

of a locomotive. 

 

3.7.4 Machine learning 

Machine learning (ML) is one of the AI approaches. 

In it, the solution to the problem is not achieved by a 

direct solution, but by learning through the application 

of solutions to many similar problems. ML was formed 

as a result of dividing the science of neural networks 

into methods of learning networks and types of 

topologies of their architecture. Support-Vector 

Machine (SVM) is one of the most widely used ML 

approaches for IM control and diagnosis tasks. In [87], 

a method for detecting rotor rod breakage using a 

combination of SVM and MCSA is proposed. In [88], 

a predictive model for predicting the technical 

condition of IM bearings was built based on the wavelet 

decomposition of the stator current, obtained using 

SVM learning. 

 

3.7.5 Conclusion of artificial intelligence methods 

AI-based methods allow solving decision-making 

tasks. Due to their versatility and separation, these 

approaches are used not only individually, but also in 

combinations to increase efficiency and accuracy. At 

the same time, signal processing and criteria calculation 

takes place outside of AI methods, but beforehand. 

Classical methods of monitoring and diagnosing the 

technical condition of IM are usually used for such 

preliminary processing. Thus, it is impossible to 

generalize the parameters of AI-based diagnostic 

methods, such as the required duration of data sampling 

and computational complexity, since each 

implementation has its own specific refinement using 

classical methods and its own AI methods. However, it 

is obvious that the required duration of data sampling 

and computational complexity will be no less than 

classical methods, since these approaches use classical 

methods together with AI methods. Another important 

feature of AI methods is the need for preliminary 

training activities, which are time-consuming and 
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expensive. Training requires large data sets of motors 

in various states and conditions to be detected and 

diagnosed. 

 

3.7.6 Statistics of fractional moments 

Recently, a new statistical approach called 

Fractional Moment Statistics (FMS) was developed to 

distinguish signals with a low signal-to-noise ratio [89]. 

Signals are transformed in the space of fractional 

moments, where they can be distinguished and grouped 

according to the level of their correlation with each 

other. SFM is extremely sensitive to very small 

differences between the investigated signals. This 

allows to imagine and describe any random sequence 

of data in the space of fractional moments [90, 91]. The 

generalized mean function (GMF) is approximated by 

a linear combination of exponential functions. Due to 

this, random sequences are presented as a small number 

of parameters (much less than the number of data). This 

image is convenient for comparing different sequences 

that have different numbers of points in the studied 

samples. It should be noted that in ordinary statistics it 

is not possible to compare samples with different 

numbers of points. 

GMF and other functions obtained within the 

framework of FMS are widely used to solve 

classification problems. In [91], this approach is used 

for automatic classification of video streams. In work 

[92], calibration curves for two-phase electrical 

mixtures were obtained using GMF. This approach has 

a greater application potential in the IM diagnosis, 

since the tasks of classification in diagnosis are one of 

the main ones. The GMF computational complexity is 

of great importance. FMS approaches were not 

previously used in the IM diagnosis, however, they 

have great potential, as they can be implemented in 

systems for monitoring the IM technical condition in a 

continuous mode, due to their efficiency and high 

sensitivity, which has already been tested in other tasks 

[91, 93]. 

 

3.8 Comparison of methods of current diagnosis of 

rotor eccentricity 

A comparison of the considered methods of current 

diagnosis of rotor eccentricity and a view of the 

advantages and disadvantages of implementation in 

devices for monitoring the IM technical condition is 

presented in Table 4. 

The summary of Table 4 can be useful for choosing 

a method of processing diagnostic information when 

building a system for diagnosing the eccentricity of the 

IM rotor as part of the drive. 

When choosing a method of processing diagnostic 

information, the following factors should be taken into 

account. Traction drive systems use either a vector 

system or a direct IM torque control system [94-96]. In 

such traction drive systems, the frequency of the 

traction motor supply voltage is proportional to the 

rotation frequency of the induction motor shaft. From 

the analysis of equation (4), it follows that when the 

value of the frequency of the supply voltage of the 

induction motor changes, the values of the frequencies 

of the subharmonics will also change. In addition, a 

change in the profile of the railway track will lead to a 

 
Table 4. Comparison of methods of current diagnosis of rotor eccentricity 

Method name Advantages Disadvantages 

The method of electric 

motor current signature 

analysis (MCSA) 

Low computational complexity 

A long selection of measurements; 

dependence on blood pressure sliding; 

spectral leakage; 

dominant harmonic with the supply 

voltage frequency 

Harmonic tracking 

methods (HOTA) 

Low computational complexity; 

slip is calculated automatically; 

a shortened spectrum is used for fault analysis 

A long selection of measurements; 

spectral leakage; 

susceptibility to noise, during load 

oscillations; an additional rotor speed 

sensor is required; 

dominant power frequency 

Parametric methods 

(MUSIC, ESPRIT) 

Short signal sampling; 

absence of the effect of spectral leakage 
High computational complexity 

Methods based on Park 

vectors 

High sensitivity; low computational complexity; 

lack of a dominant power frequency 

A long selection of measurements; 

dependence on IM sliding; 

spectral leakage 

Prony method 

Short signal sampling; 

absence of the effect of spectral leakage; 

low sampling rate 

Complex signal processing is 

required; 

there are no criteria for choosing the 

order of the model and the fitting 

method 

AI methods 
High sensitivity; high level of automation of the 

entire system 

The problem of learning; 

the difficulty of choosing diagnostic 

symptoms 

Statistics of Fractional 

Moments 

High sensitivity; the possibility of comparing 

samples with different numbers of points; 

possibility of application in classification tasks 

High computational complexity 
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change in the load on the motor shaft. This 

circumstance will lead to a change in slip [43], which, 

in turn, will affect the sub-synchronous type 

components frequencies before their values change. In 

addition, from the analysis of the results given in Table 

2, it follows that the sub-synchronous type components 

frequencies are not multiples of the frequency of the 

supply voltage. As the load increases, the magnitude of 

the IM slip will increase [16]. According to expression 

(4), this will lead to a decrease in the magnitude of the 

sub-synchronous type component frequencies. 

Therefore, the sub-synchronous type components will 

be located closer to the supply voltage frequencies. 

Thus, the chosen method of processing diagnostic 

information should have a high spectral resolution. 

Also, when choosing a method of processing 

diagnostic information, the influence of thermal 

processes should be taken into account. Thermal 

processes lead to the appearance of thermal noises, 

which, in turn, generate EMF noise. An increase in the 

temperature of the IM windings leads to an increase in 

the thermal noise EMF. This leads to a decrease in the 

signal-to-noise ratio (SNR). A decrease in SNR means 

an increase in the influence of thermal processes on the 

value of the IM stator phase currents and, as a 

consequence, on their spectral components [97]. In 

addition, the heating time constant of an induction 

motor is several orders of magnitude higher than the 

largest time constant (rotor time constant) of the 

induction motor itself. In other words, thermal noise 

parameters will change all the time. That is, the chosen 

method of processing diagnostic information must 

work correctly under conditions of constant changes in 

thermal noise parameters. 

 

5. CONCLUSION 

 

The work is devoted to the analysis of existing 

methods of processing diagnostic information that can 

be used in the construction of a system of functional 

diagnostics for monitoring eccentricity in induction 

traction motors of rolling stock.  

Based on the analysis conducted, it was established 

that the diagnostic method using current is the most 

effective for constructing a system of functional 

diagnostics for monitoring the presence of eccentricity 

in induction traction motors of rolling stock. 

When constructing functional diagnostics systems, 

the advantages of the current method are: simpler 

implementation of the functional diagnostics scheme, 

its lower cost, greater ease of identifying diagnostic 

features in conditions of interference caused by 

operational factors of rolling stock. 

As a result of simulation modeling in the MATLab 

software environment, time diagrams of phase currents 

of the stator of an induction motor were obtained in the 

absence and presence of eccentricity. In the presence of 

eccentricity, modeling was performed for cases with 

different degrees of defect. Based on the obtained time 

diagrams of phase currents of the stator of an induction 

motor, their amplitude-frequency spectra were 

calculated and constructed. Analysis of the amplitude-

frequency spectra of phase currents with different 

degrees of defects showed that harmonic components 

of the sub-synchronous type can be used as a diagnostic 

feature for monitoring the presence of eccentricity. 

Based on the analysis of operational factors, it was 

found that the harmonic components of the sub-

synchronous type are affected by the load of the 

induction motor, namely, a change in load leads to a 

change in the frequencies of the harmonic components 

of the sub-synchronous type. In addition, the value of 

these components is affected by thermal processes in 

the elements of the traction drive. These factors make 

it difficult to determine the parameters of the harmonic 

components of the sub-synchronous type and, as a 

result, make it difficult to monitor the eccentricity. 

The analysis of diagnostic information processing 

methods for eccentricity monitoring was conducted. 

When analyzing diagnostic information processing 

methods in traction drives, such operational factors as 

the ability to operate under conditions of constant 

change in supply voltage frequency, the ability to 

operate with constant load change, the ability to operate 

with constant changes in thermal noise parameters, low 

computational complexity, and high spectral resolution 

were taken into account. 

The next work of the authors will be aimed at 

researching the use of one of the considered methods in 

the construction of a diagnostic system for operational 

detection of defects in induction motors as part of the 

drive of transport equipment based on rotor eccentricity 

parameters. 
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