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Abstract  

As the service life of electrical equipment increases, it may suffer from various faults, such as overheating, 

partial discharge, etc., resulting in the generation of dissolved gases in the oil. MEMS photoacoustic sensors 

analyze acoustic signals through photoacoustic spectroscopy and signal processing technology to detect the 

concentration of dissolved gases in oil. Regarding the data traits of photoacoustic sensors, this document 

suggests a graph mutual mapping transmission network (GAM-MTN) method. First, an improved aggregation 

weight graph convolutional neural network is introduced, and the node aggregation weight function is designed 

using the Manhattan distance metric, so that the model can dynamically adjust the aggregation weight according 

to the similarity between nodes during the message passing aggregation process. Secondly, the graph mutual 

mapping transmission network is proposed to achieve uniform spread of origin field and destination field 

samples through sample mapping technology, which effectively improves the overall migration effect of the 

model. Finally, unsupervised adaptation of the classifier and domain discriminator is utilized to enhance the 

generalization capability of the system. Test outcomes demonstrate that the suggested GAM-MTN network can 

effectively improve the learning efficiency and diagnosis accuracy of transformer fault characteristics. 

Compared with other advanced neural network models, the recognition accuracy is as high as 96.37%. 

 

Keywords: MEMS photoacoustic sensor; dissolved gas in oil; graph convolutional neural network; 

 chart reciprocal mapping transfer web; defect detection 

 

1. INTRODUCTION 

 

In the power system, the transformer is one of the 

key equipment’s, and its stable operation is crucial 

to the safety and economical functioning of the 

whole electricity network. However, during long-

term operation, the transformer may cause internal 

faults due to overheating, partial discharge, etc. 

These issues not only impact the lifespan and 

efficiency of the transformer itself, but might also 

jeopardize the safety and reliability of the electricity 

network. In recent years, with the advancement of 

power technology, the need for transformer 

condition monitoring is growing, and dissolved gas 

analysis in transformer oil, as an effective method, is 

widely used in early fault detection and diagnosis of 

transformers. 

Recently, profound learning has attained notable 

outcomes in areas like fault diagnosis [1-4]and 

industrial analysis [5-8], but it also faces huge 

challenges. Especially in processing multi-condition 

and multi-source heterogeneous transformer 

monitoring data, traditional deep learning models 

struggle to effectively capture the nonlinear coupling 
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relationships between equipment state features and 

complex operating conditions. An increasing 

number of applications require the analysis of non-

Euclidean data as graphs or manifolds. Research on 

how to generalize deep learning algorithms and 

unsupervised learning methods to graphs has 

become a hot topic [9-10]. The earliest attempts to 

generalize neural networks to graphs were Scarselli 

et al. and Li et al. [11-12]. However, these methods 

exhibit inherent limitations when handling 

dynamically evolving equipment state graphs, 

including rigid node correlation intensity 

calculations and insufficient adaptability to 

topological variations. They used a recurrent neural 

structure to propagate neighboring node information 

and aggregate it to achieve learning and 

representation of target nodes. Bruna and Mallat [13] 

proposed a graph convolutional neural network. 

Subsequently, Defferrard et al. [14] and others 

parameterized the convolution kernel in the spectral 

method, which greatly reduced the spatiotemporal 

complexity of the graph convolutional neural 

network model, but it used the local neighborhood 

information of the node for convolution. operations, 
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there are limitations on the information utilization 

capabilities of the global graph structure. This leads 

to scenarios where critical fault pattern feature 

responses are easily overwhelmed by local noise in 

transformers with concurrent multi-fault conditions. 

However, CNN utilized in profound learning 

techniques has issues of sluggish convergence and 

inadequate processing efficiency. To address these 

deficiencies of CNN, Pang et al. [15] devised a 

residual CNN grounded on Bayesian optimization 

for defect detection. Goay et al. [16] suggested a 

flexible ongoing division method grounded on CNN 

and extended temporary memory. Zhu et al. [17] 

describe a CNN-SVM network model. Jin et al. [18] 

adopt lightweight neural networks for defect 

detection, thereby reducing system intricacy and 

education duration. These techniques enhance the 

alignment speed of CCN. However, there remains 

potential for enhancement. Particularly in cross-

domain migration scenarios, existing methods lack 

dynamic compensation mechanisms for feature 

distribution shifts, hindering their adaptability to 

environmental discrepancies across different 

substations. 

In recent years, research on fault diagnosis using 

MEMS sensors has made significant progress, 

providing strong technical support for equipment 

health management in multiple fields. Lavasani et al. 

[19] have performed thorough investigation into the 

application of MEMS sensors in extreme 

environments. Notably, the synergistic application 

of MEMS sensor arrays and graph neural networks 

provides a novel technical pathway for constructing 

multi-physics-coupled transformer state graphs. By 

optimizing sensor materials and packaging 

technology, they have greatly improved the 

temperature resistance and corrosion resistance of 

the sensors, and broadened the scope of MEMS 

sensors. Sensor application scenarios. Kamada et al. 

and Akita et al. [20-21] and others have explored the 

integration of MEMS sensors and Internet of Things 

(IoT) technology, and proposed a fault diagnosis 

platform based on cloud computing, realizing the 

entire process from data collection to fault 

identification. Automation greatly enhances the 

efficacy and precision of fault diagnosis. 

Nevertheless, current systems face unresolved 

challenges in decoupling feature extraction and 

domain adaptation during real-time data processing, 

demonstrating suboptimal performance when 

analyzing dissolved gas-in-oil monitoring data 

characterized by temporal correlations and spatial 

diffusivity. 

In summary, this paper proposes a graph mutual 

mapping transmission network (GAM-MTN) 

method. First, an improved aggregation weight 

graph convolutional neural network is introduced, 

and the node aggregation weight function is 

designed using the Manhattan distance metric, so 

that the model can dynamically adjust the 

aggregation weight according to the similarity 

between nodes during the message passing 

aggregation process. Secondly, the graph mutual 

mapping transmission network is proposed to 

achieve uniform spread of origin field and 

destination field samples through sample mapping 

technology, which effectively improves the overall 

migration effect of the model. Finally, unsupervised 

adaptation of the classifier and domain discriminator 

is utilized to enhance the broadening capability of 

the system. 

 

2. GAM-MTN MODEL 

 

2.1. Improved graph convolutional neural 

network model 

In order to splice the graph node embedding method 

based on message passing into a graph convolutional 

neural network (GCN), a dual-layer chart convoluted 

neural web model is built. The conceptual 

illustration of the system is depicted in Figure 1, 

alternatively determined by formula (1):  
𝑍 = 𝑅𝑒𝐿𝑈(�̂�𝑅𝑒𝐿𝑈(�̂�𝑋𝑊(0))𝑊(1)) (1) 

In formula (1): 𝑊(0), 𝑊(1)is the neural network 

weight matrix (this article uses batch gradient 

descent to train the neural web weight matrix), 𝑋 ∈
𝑅𝑁×𝐹 serves as entry matrix, and 𝑍 ∈ 𝑅𝑁×𝐶 is the 

output matrix obtained after two layers of GCN 

layers. 

The classification result𝑌 can be obtained by 

inputting the input obtained 𝑍 through the graph  

 

convolutional neural network into the activation 

function𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍). The activation function 

is defined as formula (2): 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑘) =
𝑒𝑥𝑝(𝑧𝑘)

∑𝑐𝑘=1 𝑒𝑥𝑝(𝑧𝑘)
 (2) 

In formula (2):𝑧𝑘is the value of the kth dimension 

of the encoded node embedding vector𝑧, and C is the 

dimension of the encoded node embedding vector. 

 

 
Fig. 1. Schematic Diagram of Graph Convolutional Neural Network Model 
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Although this model realizes the encoding and 

generation of graph node embedding vectors, it does 

not use the characteristics of the nodes themselves in 

the aggregation process of message transmission, 

and there are still problems of low information 

utilization and insufficient aggregation. Therefore, 

this paper adds a measure of node similarity to 

change the aggregation weight. 

The node similarity is the reciprocal of the 

distance between nodes, that is, the larger the gap 

between nodes, the lesser the resemblance. For any 

two nodes in the graph, there are many ways to 

measure the distance between them. The classic 

Minkowski distance measurement function 

calculation formula is as follows: 

 𝐷𝑖𝑠𝑡(𝑥, 𝑦) = (∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|

𝑝)
1

𝑝 (3) 

In formula (3): n is the dimension of the node, 

and p is the hyperparameter. When p=1, it is termed 

Manhattan span, when p=2, it is named Euclidean 

span, and when p=∞, it is labeled Chebyshev span. 

Several distance measurement functions are depicted 

in Figure 2. 

 
Fig. 2. Schematic Diagram of Distance Metric 

Functions 

 

This article selects the Manhattan distance when 

p=1, so that formula (3) is converted into the form of 

formula (4): 

 𝐷𝑖𝑠𝑡(𝑥, 𝑦) = ∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖| (4) 

Formula (5) is the graph node embedding 

formula of the spatial domain graph convolutional 

neural network, which converts each node in the 

graph into a vector expressing feature information. 

 ℎ𝑖
(𝑙+1)

= 𝜎(∑𝑗∈𝑁𝑖
𝜃ℎ𝑗

(𝑙)
𝑊(𝑙)) (5) 

ℎ𝑖
(𝑙+1)

represents the attribute array for the 

point𝑣𝑖 in the (l+1)th tier. 𝜎 represents a nonlinear 

activation function, usually using activation 

functions such as ReLU. 𝑁𝑖represents a node𝑣𝑖; a set 

of neighbor nodes. where θ is the weight parameter 

of the message passing aggregation between nodes. 

𝑊(𝑙)represents the neural network weight matrix of 

layer l. 

Add formula (4) to the node aggregation weight, 

that is 𝜃 =
1

√𝑑𝑖𝑑𝑗𝐷𝑖𝑠𝑡(ℎ𝑖,ℎ𝑗)
, formula (5) becomes 

formula (6): 

 ℎ𝑖
(𝑙+1)

= 𝜎(∑𝑗∈𝑁𝑖

1

√𝑑𝑖𝑑𝑗𝐷𝑖𝑠𝑡(ℎ𝑖,ℎ𝑗)
ℎ𝑗
(𝑙)
𝑊(𝑙)) (6) 

where, 𝑑𝑖denotes the connectivity of the vertex𝑣𝑖 
(i.e., the count of links attached to the vertex𝑣𝑖 ). 
𝑑𝑗 denotes the connectivity of a vertex𝑣𝑗  (i.e., the 

count of links attached to the vertex𝑣𝑗). Formula (6) 

is the improved message passing aggregation 

function in this article. This function utilizes the 

architectural details √𝑑𝑖𝑑𝑗 of the chart and the 

similarity details 𝐷𝑖𝑠𝑡(ℎ𝑖, ℎ𝑗)  between vertex 

attributes to enhance the precision and alignment 

rate of the related classification system. 

 

2.2. Sample mapping mechanism 

Owing to the sluggish alignment rate of 

convolutional neural network (CNN), an example 

correspondence method is suggested. Example 

correspondence techniques employ attribute-based 

relocation learning to correspond instances in the 

origin and destination fields to attribute space. 

Initially, the origin field data processed by the 

activation mechanism is multiplied by the 

correspondence coefficient to acquire transformed 

field data; subsequently, the correspondence 

coefficient is computed inversely based on the 

transformed field data; ultimately, the 

correspondence coefficient is combined with the 

activated origin field data to attain the corresponded 

transformed field data. The equivalent procedure is 

also applied to the destination field data, executing 

three correspondences. The aim of triadic 

correspondence is to diminish the variation in 

attribute spread between fields, augment the impact 

of example grouping, and boost the efficacy of the 

entire system. A conceptual illustration of sample 

mapping is depicted in Figure 3. Suppose that the 

entry of the origin field is𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑡},𝑥(𝑖) ∈
𝑅𝑁 , 𝑥 ∈ 𝑋, t is the count of operational states, X is 

the origin field, and N is the count of samples. The 

entry to the destination field is 𝑦 =
{𝑦1, 𝑦2, … , 𝑦𝑡}, 𝑦(𝑖) ∈ 𝑅𝑁 , 𝑦 ∈ 𝑌,  Y which is the 

destination field. The new field space to which the 

origin field and destination field are corresponded is 

Z. The outcomes of the initial correspondence of the 

origin field and destination field 𝑎 =
{𝑎1, 𝑎2, … , 𝑎𝑡} and 𝑜 = {𝑜1, 𝑜2, … , 𝑜𝑡}  respectively. 

The outcomes of the secondary correspondence are 

respectively 𝑏 = {𝑏1, 𝑏2, … , 𝑏𝑡} and 𝑝 =
{𝑝1, 𝑝2, … , 𝑝𝑡}. The new outcomes corresponded to Z 

space are respectively 𝑐 = {𝑐1, 𝑐2, … , 𝑐𝑡} and 𝑞 =
{𝑞1, 𝑞2, … , 𝑞𝑡} . The three correspondence 

coefficients of the origin field are𝐴1,𝐴2and𝐴3. The 

three correspondence coefficients of the destination 

field are𝐵1,𝐵2and𝐵3, respectively. 

The correspondence equation can be expressed 

as: 𝑋 × 𝐴 = 𝑍,𝑌 × 𝐵 = 𝑍After the origin field and 

destination field data are processed by the activation 

mechanism, the correspondence coefficients A and 

B can represent 𝐴 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑍 , 𝐵 =
(𝑌𝑇𝑌 + 𝜆𝐼)−1𝑌𝑇𝑍 , where λ is the regularization 

factor. The single correspondence diagram is 

depicted in Figure 4. The theoretical verification is 

as outlined below: 

Assume the correspondence output is 𝑎 =
{𝑎1, 𝑎2, … , 𝑎𝑡},then𝑎 = 𝑥𝐴1,assuming the matrix𝐴ℎ 

represents a weighted graph, there exists a 

relationship 𝑥 = 𝑎𝐴ℎ
𝑇 , Given the local similarity 

matrix   A,    the  criterion    for    selecting   a   good 
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Fig. 3. Sample mapping method 

 

 
Fig. 4. Single sample mapping method 

 

projection is to minimize the following weighted 

cost function as shown in Equation (7): 

 𝜀(𝑥) = 𝑚𝑖𝑛 [
1

2
∑𝑖𝑗 𝐴𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

2] (7) 

Then we can get formula (8): 

 𝜀(𝑥) = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒[𝑎𝐴ℎ
𝑇(𝐷 − 𝐴)𝐴ℎ𝑎

𝑇] (8) 

To address the issue, apply equality 

constraints𝑎𝐷𝑎𝑇 = 1,𝐴ℎ
𝑇𝑎𝐷𝑎𝑇𝐴ℎ = 1 and let L=D-

A. Therefore, the minimization problem can be 

expressed as formula (9): 

 𝛺(𝑌) = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑎𝐴ℎ
𝑇𝐿𝐴ℎ𝑎

𝑇)𝑎𝐷𝑎𝑇=1(𝑎𝐴ℎ
𝑇𝐿𝐴ℎ𝑎

𝑇)
  (9) 

The ideal coefficient A of the restricted goal 

identified in this study is invertible, and the formula 

resembles a straight expression. Furthermore, the 

minimum squares approach employs the squared 

residual sum to reduce the resolution, rendering the 

procedure of determining the ideal coefficient A 

straightforward and efficient. The equation for 

reducing the squared residual sum is formula (10): 

 𝑄 = 𝑚𝑖𝑛 ∑𝑖 (
1

2
(𝑎𝑖𝑒 − 𝑎𝑖)

2) (10) 

Among these, 𝑎𝑖𝑒 is the predicted measure, 𝑎𝑖 is 

the real measure, and Q is the total of squared 

differences. Thus, the conversion vector that reduces 

the target operation 𝑎𝑖can be provided through the 

smallest characteristic value solution of the extended 

characteristic value issue: . 

Then, the eigenvector (𝜆0 ≤ 𝜆1… ≤ 𝜆𝐺−1)  and 

transformation matrix 𝐴ℎ = (𝑎0, 𝑎1, … , 𝑎𝐺−1)  are 

defined according to the corresponding eigenvalues. 

After clustering mapping, the data sample clustering 

effect is good. Thus, the conversion array𝐴ℎ  is an 

enhanced mapping. At the same time, the restrictions 

are: 𝐴1𝐴ℎ𝑎 = 𝑎,𝐴ℎ𝐴1𝑥 = 𝑥, which can be obtained: 

𝐴1𝐴ℎ = 𝐸, where E is the unit array and 𝐴1is the 

reverse array of𝐴ℎ; these two arrays possess the same 

correspondence performance. Via the 

aforementioned verification, the origin field 

mapping exhibits excellent grouping effect, thereby 

achieving the attribute enhancement procedure. 

 

2.3. Unsupervised adaptation 

Exist scarce or no markers in the destination 

field, thus certain unsupervised field adjustment 

techniques have been suggested to acquire field 

consistency and distinctive traits. A conceptual 

illustration of unsupervised field adjustment is 

depicted in Figure 5. As depicted in Figure 5, three 

categories of details play a significant role: class 

markers, field markers, and data layouts. Class 

marker details, field marker details, and data layout 

details are represented by classifiers, field 

differentiators, and data architectures, individually. 

T T

h h h h hA LA A A DA=
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Fig. 5. Unsupervised domain adaptive 

diagram 

 

It is presumed that the tag spaces of the origin 

field and the destination field are identical (i.e., Ds = 

Dt), whereas the attribute spaces As and at are 

distinct yet interconnected (i.e., input shift). In 

GAM-MTN, the MMD technique constructs a 

profound network g: Xt→Dt, capable of forecasting 

the instance tag of the destination field. MMD is a 

non-parametric metric utilized in RKHS to gauge the 

anticipated resemblance of two spreads. That is 

articulated as formula (11): 

 𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡) = ||𝐸𝑥𝑖
𝑠∼𝐷𝑠

[𝜑(𝐹(𝑥𝑖
𝑠))] −

𝐸𝑥𝑗
𝑡∼𝐷𝑠

[𝜑(𝐹(𝑥𝑗
𝑡))]||𝛺

2   (11) 

Among these, φ(⋅) denotes the non-linear 

correspondence operation, and Ω denotes that such 

separation is realized by inserting the extracted 

attributes As measured in RKHS, E(⋅) denotes the 

statistical anticipation. DANN can be utilized to 

forecast categorical signals. Nevertheless, the 

attribute selector trained by DANN creates a 

challenge for the field differentiator to identify the 

discrepancy among the two fields, so GAM-MTN 

requires to handle three aspects after the diagram is 

produced: attribute selector (F), label predictor (C) 

and field differentiator Component (D). In order to 

acquire transferable attributes and simulate the 

aforementioned three categories of attribute details, 

the comprehensive goal operation is arranged as a 

mixture of categorization cost, field adjustment cost, 

and structure adjustment cost. 

Utilize cross-entropy cost to estimate the actual 

and forecasted tags. The categorization cost is 

computed as 𝐿𝐶(𝑋𝑠, 𝑌𝑠) = 𝐸(𝑥𝑖
𝑠,𝑦𝑖

𝑠)~𝐷𝑠
𝐿(𝐶(𝑥𝑖

𝑠), 𝑦𝑖
𝑠) 

where 𝐶(𝑥𝑖
𝑠) signifies the prediction outcome of the 

class predictor and 𝐿(⋅,⋅)signifies the cross-entropy 

cost. 

To tackle the field covariate shift, a field 

differentiator is utilized to retrieve attributes from 

the origin and destination fields, and an attribute 

extractor is trained to deceive the field differentiator. 

The field adjustment cost is determined as formula 

(12): 

 𝐿𝐷𝐴(𝑋𝑠. 𝑋𝑡) = 𝐸𝑥𝑖
𝑠∼𝐷𝑠[𝑙𝑜𝑔(1−𝐷(𝐹(𝑥𝑖

𝑠)))] + 𝐸𝑥𝑖
𝑡 −

𝐷𝑡[𝑙𝑜𝑔( 𝐷(𝐹(𝑥𝑗
𝑡)))]  (12) 

where 𝐹(𝑥𝑖
𝑠)  and 𝐹(𝑥𝑗

𝑡)  signify the retrieved 

attributes of the i-th origin instance and the j-th 

destination instance individually. The 𝐷()figure is 0 

or 1, which is utilized to differentiate which field the 

instance pertains to. 

Utilize MMD to match the attribute frameworks 

of the origin and destination fields. The framework 

alignment cost is determined as formula (13): 

 𝐿𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡) = ||𝐸𝑥𝑖
𝑠∼𝐷𝑠

[𝜑(𝐹(𝑥𝑖
𝑠))] −

𝐸𝑥𝑗
𝑡~𝐷𝑠

[𝜑(𝐹(𝑥𝑗
𝑡))]||𝛺

2   (13) 

The comprehensive goal operation to realize 

unsupervised field adjustment can be articulated as 

formula (14): 

 𝐿𝑇𝑜𝑡𝑎𝑙(𝑋𝑠, 𝑌𝑠, 𝑋𝑡) = 𝐿𝑐(𝑋𝑠, 𝑌𝑠) + 𝑟𝐿𝐷𝐴(𝑋𝑠, 𝑋𝑡) +
𝑘𝐿𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡)  (14) 

 

3. EXPERIMENTAL ANALYSIS 

 

3.1 MEMS photoacoustic pool design 

Appropriate photoacoustic pool geometry is 

beneficial to the enhancement of photoacoustic 

signals and the improvement of system sensitivity. 

Therefore, it is particularly important to find the 

optimal size of the photoacoustic pool. This article 

uses limited segment application simulation to find 

the optimal size of the photoacoustic pool, and 

conducts experimental verification based on the 

simulation results. 

The gas concentration is controlled to 5000 ppm 

and the frequency is 7 Hz. The parameter values of 

the extent, breadth and elevation of the 

photoacoustic cavity are changed in sequence, and 

the model is parametrically scanned to obtain the 

influence of the extent, breadth and elevation of the 

photoacoustic cavity on the sound pressure signal. 

The emulation outcomes are displayed in Figures 

6,7. 

Fig. 6. Acoustic Pressure Signal from Light 

Source 

 
Fig. 7. Acoustic Pressure Signal from Heat 

Source 
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It may be observed from Image 6 that the rise in 

the length and width of the photoacoustic cavity will 

cause the sound pressure signal of the light source to 

weaken. However, when the height of the 

photoacoustic cavity increases, the sound pressure of 

the light source exhibits a pattern of initially rising 

and subsequently falling, and attains 9 mm. peak. 

Rising in the length, width and height of the 

photoacoustic cavity raises volume of the 

photoacoustic cavity, which will lead to the 

weakening of the acoustic pressure indication of the 

illumination origin. However, the increase in the 

height of the photoacoustic cavity is also 

accompanied by the lengthening of the light route. 

When the optical path becomes longer, the absorbed 

light energy increases, the number of excited 

molecules increases, and the excited sound pressure 

signal also increases. Therefore, under the combined 

action of these two factors, the sound pressure of the 

light source will first increase and then decrease as 

the height of the photoacoustic cavity increases. It 

may be observed from Image 7 that extent the length, 

width, and height of the photoacoustic cavity will 

weaken acoustic stress indication of the thermal 

origin. The acoustic stress signal of the heat source 

is not affected by the length of the optical path like 

acoustic stress indication of the light source. 

Therefore, the heat energy released by the heat 

source remains unchanged. The increase in the 

length, width, and height of the photoacoustic cavity 

causes the volume of the photoacoustic cavity to 

increase, and acoustic stress indication of heat source 

in the cavity decreases. 

From the perspective of light source sound 

pressure signal detection, the optimal height of the 

photoacoustic cavity is 9 mm, and the shorter the 

length and width of the photoacoustic cavity, the 

better. For a specific photoacoustic cavity, the light 

source sound pressure signal exists in the form of a 

sine wave, and its frequency is consistent with the 

adjustment frequency of the MEMS infrared 

illumination origin. Affected by the heat generated 

by the MEMS infrared light source, in addition to the 

light source sound pressure signal, there is also a heat 

source in the photoacoustic cavity. For the sound 

pressure signal, the latter is much larger than the 

former and exists as a constant value. 

Since the actual size of the photoacoustic cavity 

is limited by the technology level, the size of the 

MEMS infrared light source and the MEMS 

microphone, the optimal length, width, and height of 

the photoacoustic cavity are determined to be 7 mm, 

5 mm, and 9 mm respectively. 

 

3.2. GAM-MTN model verification analysis 

To illustrate the superiority of the GAM-MTN 

model, experiments were conducted, and all 

migration tasks are defined as source domain target 

domain. The transformer parameter data collected by 

MEMS photoacoustic sensors under four working 

conditions (D1-D4) were selected. In the 

experiment, the transformer was in various states, 

including normal (N), partial discharge (PD), low 

energy discharge (F1), high energy discharge (F2), 

medium and low temperature overheating (T1) and 

high temperature overheating (T2). Each failure 

mode contains 204,800 data points, that are arranged 

in 100 instances; every instance includes 2,048 data 

entries. The design transfer tasks are D1-D2, D1-D3, 

D1-D4, D2-D3, D2-D4, and D3-D4. Transferring 

tasks D1-D2 indicates that the framework is 

educated on the tagged origin data collection 

gathered in operational situation D1 and shifted to 

the untagged destination data collection gathered in 

operational situation D2. In the dataset, each sample 

consists of 2048 data points containing sufficient 

fault information, and the number of samples 

obtained under each fault is 1000. The data 

collection is partitioned into training collection and 

testing collection based on the proportion of 6:4. 

During education, the number of iterations is set 

to 900. Considering that parameter settings have a 

significant impact on the framework diagnosis 

results, the numerical span of the penalty factor is 

{0.2, 0.4, 0.6, 0.8, 1}, and the numerical span of the 

amount of mappings is {1, 2, 3, 4, 5}, as shown in 

Figure 8, depicts the impact of the penalty parameter 

and the number of mappings on the framework fault 

diagnosis precision. It may be observed that when 

the penalty parameter is assigned to 0.6 and the 

quantity of mappings is assigned to 3, the model 

reaches the peak on the data set. Best accuracy 

performance. Therefore, this set of parameter 

configurations was selected. 

 
Fig. 8. The relationship between penalty 

parameters, mapping times, and diagnostic 

accuracy 

 

To confirm the efficiency of the framework, 

compare it with the performance of the following 

neural network: MK-MMD (Multiple Kernel 

Maximum Mean Discrepancy) is a method that uses 

multiple kernel functions to assess the spread 

discrepancy among the origin field and the 

destination field, which can effectively capture the 

differences between different feature spaces are 

suitable for many types of data. The calculation is 

relatively simple and easy to implement. CORAL 

(Correlation Alignment) is a method to achieve 

feature alignment by reducing the discrepancy 
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Fig. 9. Comparison of Diagnosis Accuracy and Training Time for Different Networks 

 

among the secondary statistical moments 

(covariance matrices) of the origin field and the 

destination field. It has high computational 

efficiency, is suitable for large-scale data sets, and is 

simple to implement, easy to integrate into existing 

deep learning frameworks. DANN (Domain-

Adversarial Neural Networks) is a method that 

allows the attribute extractor to acquire field-

invariant attributes by introducing a domain 

discriminator. It can effectively handle the field shift 

issue. The model structure is clear and the theoretical 

foundation is solid. It is suitable for many 

applications. An unsupervised domain adaptation 

task. CDANN+E (Conditional Domain-Adversarial 

Neural Networks with Entropy Minimization) is a 

method that adds conditional domain adversarial and 

entropy minimization modules based on DANN. It 

can better handle the category disparity issue and 

enhance the categorization efficiency of the 

framework. Through entropy Minimization further 

enhances the discriminability of features and 

improves the robustness of the model. DAGCN 

(Dual Attention Graph Convolutional Network) is a 

method that combines graph convolutional networks 

and dual attention mechanisms. It can effectively 

process non-Euclidean spatial data and extract 

complex features in graph structures. Through the 

dual attention mechanism, it improves Feature 

representation ability and model interpretability. 

Figure 9 shows the training time, training 

accuracy and error corresponding to each neural 

network model under each task. Figure 10 shows the 

average training accuracy of each network under 

each task. 

Experimental results show that GAM-MTN 

exhibits significant advantages in diagnostic 

accuracy. GAM-MTN can provide higher accuracy 

when handling fault diagnosis tasks of dissolved 

gases in transformer oil under complex working 

conditions.  Regardless  of  the  working  conditions, 

 
Fig. 10. Average Training Accuracy for 

Different Networks on Various Task 

 

the diagnostic accuracy of GAM-MTN is 

significantly higher than other models. This is due 

to GAM-MTN's unique sample mapping method, 

which makes the sample distribution in the origin 

field and the destination field more even, thus 

improving the overall migration effect. This sample 

distribution optimization not only helps reduce 

inter-domain differences, but also achieves better 

adaptability at the feature level, ensuring the 

consistency and stability of the framework in 

various operational situations. Secondly, the data of 

dissolved gases in transformer oil often have 

complex structures and nonlinear relationships. 

GAM-MTN adds a measure of node similarity to 

change the processing of aggregation weights and 

performs well in processing non-Euclidean space 

data, can effectively handle this type of data. This 

capability improves the precision of feature 

extraction, and significantly increases the 

convergence velocity of the framework. In contrast, 

other models such as MK-MMD, CORAL, DANN 

and CDANN+E cannot efficiently process non-

Euclidean geometric attributes, resulting in low 

diagnostic accuracy under complex working 
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conditions. Although DAGCN has made 

improvements in processing non-Euclidean spatial 

data, its internal convolutional neural network 

(CNN) makes the running time longer, affecting the 

efficiency in practical applications. GMMTN 

performs well in processing non-linear geometric 

information, and further improves the model's 

convergence speed and reduces running time by 

optimizing the sample mapping method. 

In order to study and understand the 

classification ability of the model in each category, 

the confusion matrix of each model as shown in 

Figure 11 was made based on experiments. 

The confusion matrix displays the diagnostic 

precision of each framework in various fault 

categories. It may be observed that GAM-MTN 

performs well in the diagnosis of most fault 

categories, especially in the diagnosis of PD and F1 

faults, achieving high accuracy. In contrast, other 

 

(a) Confusion Matrices for MK-MMD 

 
(b) Confusion Matrices for CORAL 

 
(c) Confusion Matrices for DANN 

 
(d) Confusion Matrices for CDANN+E 

 
(e) Confusion Matrices for DAGCN 

(f) Confusion Matrices for GAM-MTN 

Fig. 11. Confusion Matrices for Different 

Networks 

 

models perform poorly in diagnosing certain fault 

categories. For example, MK-MMD made many 

errors in diagnosing PD type faults, while CORAL 

performed poorly in diagnosing F2 type faults. This 

suggests that these models may be inadequate in 

handling certain types of failures. GAM-MTN 

significantly improves its diagnostic accuracy and 

stability under complex working conditions by 

optimizing sample distribution and adding a 

measure of node similarity to change the processing 

of aggregation weights. 

In Figure 12, through the visualization results of 

the t-SNE graph, we can clearly see the superiority 

of GAM-MTN in processing origin field and the 

destination field data. GAM-MTN can cluster the 

data in the origin field and the destination field into 

6 clear centers respectively. The data points of each 

category form obvious clustering areas, showing 
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excellent feature extraction and category retention 

capabilities. In contrast, other models MK-MMD 

and DAGCN have fuzzy clustering centers on some 

data points of most categories, and the distribution 

of data points is scattered, making it difficult to form 

clear category boundaries. In addition, GAM-MTN 

achieves better separation between data points of 

different categories with almost no cross-overlap, 

indicating its higher accuracy in classification tasks. 

These advantages make GAM-MTN notably 

superior to other frameworks in aspects of cross-

domain adaptability and high-precision 

classification. 

 
(a) t-SNE Plots for MK-MMD 

 
(b) t-SNE Plots for DAGCN 

 

(c) t-SNE Plots for GAM-MTN 
Fig. 12. t-SNE Plots for Different Models 

 

4. CONCLUSIONS 

 

This paper addresses the challenges of feature 

distribution shift and domain adaptation in cross-

condition fault diagnosis of power transformers by 

proposing an innovative diagnostic framework based 

on graph-structured transfer learning. By 

constructing a dynamic graph convolutional 

network and a cross-domain mapping co-

optimization mechanism, the framework achieves 

efficient feature decoupling and knowledge transfer 

from multi-source heterogeneous monitoring data. 

This method overcomes the reliance of traditional 

diagnostic models on the completeness of labeled 

data, leveraging the topological modeling 

advantages of graph neural networks to effectively 

capture the nonlinear relationships between fault 

characteristics and operational condition 

interference factors. Additionally, through a 

hierarchical domain adaptation strategy, it 

accomplishes stable transfer from laboratory-

calibrated data to complex field environments under 

unsupervised conditions. Theoretical analysis and 

engineering validation demonstrate that the 

framework significantly enhances the 

distinguishability of fault patterns in cross-domain 

scenarios and the generalization capability of the 

diagnostic system. The research findings provide 

universal reference value for the intelligent 

diagnosis of critical power equipment such as 

transformers. Future work will focus on exploring 

multi-physical field information fusion and lightweight 

deployment solutions for edge computing, 

promoting the large-scale application of this 

method in fault early warning for new power 

systems. 
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