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Abstract 

Even with all measures approved by industrial sector specialists to avoid faults leading to major accidents, 

this field still suffers from some issues. Therefore, the safety and reliability of these industrial systems become 

necessary, leading to focus more on anticipating fault occurrence by giving fault detection and diagnosis a high 

priority. To solve this problem, a large set of reliable methods has been developed. Machine learning-based 

methods have gained significant importance as they have achieved promising results. However, the black-box 

nature of the generated fault detection models has restricted their investigation by users. Thus, explainable 

models aim to show features that influence the detection model decision. In this study, an Improved Discrete 

Equilibrium Optimizer Algorithm (IDEOA), which aims to solve different discrete optimization problems, was 

proposed to generate a rule-based fault detection model easily explainable by reading its classification rules. 

To this end, the Opposition-Based Learning (OBL) strategy is adopted in the IDEOA to avoid being stuck in 

local optima. A key contribution of this study is the novel application of the methodology to the Tennessee 

Eastman Process. The result of this study is a fault diagnosis model that consists of 16 rules, six of them belong 

to normal operating conditions and the rest reveal fault occurrence (F4). Then, an accuracy value is calculated 

to assess the effectiveness of our approach by contrasting it with other algorithms described in the literature. 

The findings indicate that the proposed approach outperforms other methods.  
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1. INTRODUCTION 

 

With industrial technical progress and 

development, the main challenge in fault detection 

and diagnosis in industrial systems is the increasing 

number of accidents and incidents due to system 

failures, despite all precautions and safety 

improvements. Other challenges include the 

complexity and nonlinearity of industrial systems, 
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the high dimensionality and heterogeneity of data, 

the lack of labeled data for training and testing 

models, and the need for real-time and online fault 

detection and diagnosis. Additionally, the reliability 

and interpretability of the models used for FDD are 

also important challenges that need to be addressed.  

In the last decades, fault diagnosis, which is an 

operation of detecting and locating faults; has 

become an unavoidable problem for companies. 

Firstly, it can help identify and locate faulty elements 

in the system, which can prevent further damage and 

reduce the risk of accidents and incidents [1].   

Secondly, FDD can provide early warning of 

potential faults, which can allow for proactive 

maintenance and repair, reducing downtime and 

increasing availability [2]. Moreover, FDD can help 

analyze the consequence of a failure in the global 

system, which can inform decision-making and 

improve the overall performance of the system. As it 
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can contribute to the competitiveness of production 

tools by improving the reliability, availability, and 

productivity of industrial systems [3]. This diagnosis 

tool has become a subject of many researches that 

created a growing interest among industrialists, 

which has led to numerous research works. The 

literature has mentioned several methods being 

developed in this field. These methods are classified 

into three categories, depending on the type of used 

information: symbolic, model-based methods, and 

data-based methods [4,5]- [6]. Examples include 

SADT, PN (Petri Nets), Parity Space, neural 

networks (NN), and pattern recognition methods. 

Unlike other types of methods, data-driven 

methods or methods based on Machine Learning 

(ML) algorithms are widely employed in this field. 

The main advantage of using ML-based methods for 

FDD in industrial systems is that they can build a 

fault diagnosis model using a set of data that is being 

collected without using the system model [4,5]. This 

means that these methods can be applied to a wide 

range of industrial systems without requiring a 

detailed understanding of the system’s physics or 

dynamics. Additionally, ML-based methods can 

handle high-dimensional and heterogeneous data [7], 

and can learn complex patterns and relationships 

between variables that may not be easily detectable 

by human experts. 

However, the main disadvantage of machine 

learning-based methods is that they often generate 

black-box models, such as Neural Networks (NN) 

and Support Vector Machines (SVM). Which means 

that their internal process for making classification 

decisions cannot be easily interpreted by the user [6]. 

This can make it difficult to understand the reasons 

behind the model’s predictions and to identify the 

root cause of a fault. In addition, ML-based methods 

require a large amount of labelled data for training 

and testing, which may not always be available in 

industrial settings. Finally, ML-based methods may 

be computationally expensive and may require 

significant computational resources to train and 

deploy. On the other hand, methods that produce 

white-box models [6], among them, we can cite 

Rule-Based classification methods, that can provide 

a clear and concise representation of the decision-

making process, which can help users understand the 

reasons behind the model’s predictions and identify 

the root cause of a fault. Additionally, rule-based 

models can be easily updated and modifies based on 

new data or changes in the system, which can 

improve their adaptability and robustness. 

Another way to improve the explainability of 

FDD models is to use visualization techniques to 

represent the model’s internal workings and 

decision-making process. Visualization techniques 

can help users understand the relationships between 

variables and the factors that influence the model’s 

predictions. Finally, it is also important to involve 

domain experts in the development and validation of 

FDD models, as their knowledge and expertise can 

help ensure that the models are accurate, reliable, 

and interpretable. In practice, the experts of the 

industrial domain use the rules generated by the 

diagnosis system, by translating them into concrete 

actions, in order to enhance reliability, safety and 

efficiency of industrial systems. These concrete 

actions can be presented in the integration of new 

technologies such as captors and sensors…to prevent 

fault occurrence and to plan for predictive 

maintenance by monitoring equipements, For 

example; when a subnormal variable exceeds a 

certain threshold then sensors can trigger an alert to 

take actions. These generated rules allow also, a 

better planning for interventions when the diagnosed 

indicators indicate a real risk, which reduces 

unnecessary costs. In addition, to prevent fault 

occurrence, domain experts used to insert 

surveillance systems to detect anomalies as soon as 

they appear, also the generated rules can be inserted 

into a software or into an automation system to make 

fast decisions in case of a danger. For example, an 

unusual increase of temperature may signal an 

imminent fault, so, the domain experts act as fast as 

possible to reduce this temperature. 

 In this context, to overcome optimization 

problems researchers have developed several meta-

heuristic methods. A novel meta-heuristic method 

called the Equilibrium Optimizer Algorithm (EOA) 

[8] which was simulated by physics, based on the 

principle of control volume equilibrium 

phenomenon, and used to estimate equilibrium states 

to find optimal solutions; was recently proposed by 

Faramarzi et al. [8] to deal with continuous 

optimization issues. The fundamental achievements 

of this study are at first a discretization of data 

attributes using Weka tool, to resolve the fault 

diagnosis issue, which is considered as a discrete 

problem. Then, the discrete version of the 

Equilibrium Optimizer Algorithm (DEOA) 

elucidated at (MALIK & HAOUASSI) [9], is 

improved by introducing an OBL technique to 

exploit the research space by providing promising 

solutions and to escape from being trapped in local 

optima. At second, we have developed a fault 

detection and diagnosis model using the IDEOA and 

a rule-based classification approach, to generate set 

of classifiers, and each classifier includes a set of 

reduced rules. This approach makes the model more 

explainable and interpretable for users, as they can 

easily read the classification rules and understand the 

features that influence the detection model decision. 

Additionally, the IDEOA is used to solve different 

discrete optimization problems and generate 

explainable fault detection models. Lastly, to 

validate the performance of the proposed approach 

in our manuscript, we used to apply our study for the 

chemical process “Tennessee Eastman plant” TEP, 

which is a well-known industrial process. The TEP 

is considered as a realistic, well defined system and 

an ideal benchmark process that has been widely 

used for testing and developing several process 

monitoring and fault detection algorithms in the 

literature. The obtained results in this paper are 
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compared with the findings of other techniques. In 

the next section, we will present a brief history on 

diagnostic methods in industrial contexts, and how 

did the EOA fit into the evolution of earlier methods.   

This paper is structured as follows. In literature 

review section, we present a survey of relevant 

similar studies on the TEP fault diagnosis; then a 

presentation of some EOA associated works is given. 

In background section, we give a description of the 

rule based classification approach and the discrete 

version of the EOA. The proposed methodology of 

fault detection and diagnosis based on RC and the 

IDEOA is presented in section 4, with a brief system 

description to be exploited in this paper. We provide 

an evaluation of the obtained results in experiments 

and results sections, then we discuss the results of 

the suggested approach and we compare the acquired 

results with respect to other works. Finally, the last 

section gives a conclusion to our work.  

  

2. LITERATURE REVIEW 

 

Over the past few years, numerous authors 

focused on improving the performance of industrial 

diagnosis of the TEP by applying a wide variety of 

data-based methods to identify the pertinent faults 

that can lead to partial or total shutdown of the 

system. In this section, we will give a brief history 

on the diagnostic methods used to detect faults in the 

TEP, and then we used to mention how did the EOA 

fit into the evolution of earlier methods.  

 

2.1. Fault diagnosis of TEP 

Some of the most known works mentioned in the 

literature that dealing with fault diagnosis in the 

chemical industries are as follows. Zou et al. [10]; 

proposed a new technique for recovering faults in the 

(TEP), using a new algorithm of neural network to 

build ELM network architecture, which is more 

compact than I-ELM, OI-ELM, and B-ELM with a 

fast convergence rate. The results of comparison of 

this new approach with other algorithms, shows it’s 

superiority in term of accuracy. Onel et al. [11]; 

combined feature selection with nonlinear Kernel-

dependent SVM classification algorithm to offer an 

accurate FDD model in continuous process, to 

minimise the loose of information, and enable 

simultaneous modeling and feature selection. The 

results of this study are highly promising not only in 

terms of detection accuracy but also detection 

latency. In another work; Soraya et al., successfully 

applied the Principal Component Analysis (PCA) 

method in process control to monitor large-scale 

plants, using numerous types of controlling statistics 

such as the squared prediction error (SPE), also 

recognized as Q statistic. This statistic was used to 

indicate faulty situation without giving any 

information about its source. For this reason, 

contribution charts (complete and partial 

decomposition contribution CDC and PDC) which 

are a very known PCA tool were employed to isolate 

faults [12]. It is worth noting that PCA method 

cannot deal with nonlinear or multimodal 

characteristics of industrial data. Therefore, Zhang et 

al. [13] proposed a fault detection method based on 

the K-nearest neighbors (Diff-PCA), to remedy the 

limitations of PCA that has a lower fault detection 

rate in industrial processes. To overcome the 

problem, Han et al. proposed another approach for 

fault diagnosis of the TEP by using an iterative 

method of neural network to define the number of 

hidden layer nodes [14]. For Deep Learning FDD 

techniques, they have been widely applied to a large 

variety of engineering fields [15]-[16]. In this 

context; Lomov et al. developed an advanced 

approach for early detection and prediction of faults 

on extended TEP datasets, by investigating a variety 

range of recurring and convolutional architectural 

designs to select the optimal architecture [17]. They 

also proposed to use neural networks to boost and 

improve information utilized in their research. 

Furthermore, to identify TEP problems, sample 

features are initially simplified using a ML and data-

driven classification (SVM) technique in the work of 

Xu et al. [18] to validate the engineering application 

of the suggested method. Where authors used the 

PNN probabilistic neural networks as the principal 

classification tool for fault diagnostic model, based 

on feature selection and a bio heuristic optimizer to 

optimize the hidden smoothing factor (σ) of PNN to 

improve its classification performance. In another 

study, Hu et al. [19] to enhance the fault classifier’s 

accuracy, authors proposed a deep learning-based 

fault diagnosis method for chemical processes. 

Combining feature selection and KELM classifier as 

an optimization strategy. The experimental results 

given in this study verify the applicability and 

effectiveness of the model. 

Note that in the above-proposed strategies used 

to detect faults in TEP such as neural networks and 

SVM, and PCA, they require large amounts of data 

to be effective, which increase their computational 

complexity with high training time especially for DL 

architectures. At last, the most important that they 

are considered as black boxes methods, which makes 

the interpretability of their decision very difficult. 

Aiming to these limitations, a FDD approach using a 

novel meta-heuristic algorithm (IDEOA) was 

proposed in this study. 

  

2.2. Meta-heuristic methods and EOA 

applications 

With the development of computer tools and the 

complexity to solve optimization problems, many 

optimization methods have emerged. These methods 

may be split into two principal classes: exact and 

stochastic methods. In this study, we are interested 

in the second category and more particularly in meta-

heuristic methods [20]. These methods are 

algorithms that aim to solve difficult optimization 

problems, and find the best solution that converges 

to a global optimum. In fact, we can find the 

optimization problems in many applications such as 

the design of new systems (dimensioning), 
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optimization of process operating conditions, system 

control (stabilization, trajectory tracking), 

production planning, transportation, localization, 

also in monitoring and supervision (maintenance, 

diagnosis problems), and in many other fields. 

Most of meta-heuristic algorithms are inspired by 

nature [20]: physics like Simulated Annealing (SA) 

method, biology such as genetic algorithms, and 

even animal behaviour like the ant colony. In 

literature, several meta-heuristic algorithms have 

been mentioned: starting from Genetic Algorithms 

(GA) inspired by the principle of natural evolution 

based on ideas that are derived from population 

genetics. Chen et al. [21] were the first to propose 

the use of GA in the fault diagnosis field. Many other 

algorithms have been modified to cope with fault 

diagnosis problem. We can find the Simulated 

Annealing method (SA) presented by Kirkpatrick et 

al in 1983; that was extended to the case of fault 

diagnosis by Wicaksana in 1992. There are also 

many other methods developed to solve various 

issues; such as; Ant Colony Optimization (ACO), 

Grey Wolf Optimizer (GWO), Estimation of 

distribution Algorithm (EDA) and Particle Swarm 

Optimization (PSO). 

A novel optimization algorithm has been recently 

introduced in the field of optimization, known as 

“Equilibrium Optimizer” (EO), this algorithm was 

first suggested by Faramarzi et al. [8], where it relies 

on the principles of physics and draws inspiration 

from control volume mass balance models employed 

to evaluate both dynamic and steady states. The 

suggested method explores a dynamic mass balance 

approach that considers both inputs and outputs 

within a control volume. To determine the 

concentration of a non-reactive constituent in the 

control volume, a mass balance equation takes into 

account various involved sources and sinks. The 

EOA has demonstrated outstanding effectiveness 

and efficiency in achieving optimal or nearly optimal 

solutions in comparison to other algorithms currently 

available. Subsequently, Abdel-Basset et al. [22] 

tried to enhance the EOA by employing a method for 

reducing linearity diversity (LRD) and eliminating 

local minima (MEM). To evaluate the effectiveness 

of this suggested algorithm, a comparative analysis 

was conducted on a set of reliable algorithms, which 

were implemented on R.T.C France's commercial 

solar cells. Another study, and in the same axis of 

work as that of Abdel-Basset et al. was carried out. 

The primary goal of this study was to estimate the 

parameters of three distinct models of photovoltaic 

cell. In contrast to the initial EO, the IEO utilized by 

Wang et al. [23] in their investigation to solve 

parameter identification, utilizing a back-

propagation NN to anticipate a greater amount of PV 

cell output data. As a result, it is capable of executing 

a more effective optimization process by utilizing a 

more logical fitness function. In their study, Too & 

Mirjalili, [24] introduced a novel iteration of the EO, 

to address the challenge of feature selection in the 

classification of biological data. In a further 

endeavour to address the feature selection issue 

through the latest algorithm mentioned in reference 

[25]; a transfer function with a V-shape was utilized 

to convert the continuous values generated in "EO" 

into a binary search area. Next, the Simulated 

Annealing (SA) technique was employed for 

improving the exploitation of the (BEO). The 

outcomes of the suggested methodology 

demonstrate a high competitive performance for 

solving feature selection problems. 

To enhance the precision of optimization in EO, 

increase its exploitative abilities, and escape from 

getting stuck in limited optima, Fan et al. [26], 

proposed an adapted version of EO called (M-EO). 

This version incorporates Opposition-Based 

Learning (OBL) technique and novel update 

regulations. Conversely to the (EOA) proposed by 

Faramarzi et al. [8], that exclusively deals with 

continuous optimization issues, However, in [9] the 

authors suggested a discrete version to resolve the 

discrete optimization problem of rule-based 

classification. By combining the associative 

classification and intelligence-based population 

methodologies and introducing new discrete 

operators to prevent local solutions and reach global 

ones that improve the power of exploration and 

exploitation capabilities in search space. 

In other works, the EOA proposed by [8] has 

shown its superiority over other conventional meta-

heuristic algorithms. To our knowledge, the 

optimization algorithm (EOA) has never been 

adapted to the problem of detecting and diagnosing 

industrial failures. This motivated us to apply this 

novel algorithm for the detection and diagnosis of 

the industrial and the chemical Tenesse Eastman 

(TEP) faults. In this paper, we have used the discrete 

version (DEOA), because the original algorithm is 

applicable only to continuous problems. In the 

following section, we will give more details of the 

chosen method. 

 

3. BACKGOUND 

 

In this section, we tried to present both artificial 

intelligence methodologies: rule based classification 

and DEOA; used in this study to extract necessary 

informations from data system, in order to generate 

an explainable fault diagnosis model, and for 

facilitate the decision-making. 

 

3.1. Rule based classification 

With the scientific progress and technological 

development, the size and dimension of datasets are 

constantly increasing; hence, the complexity of 

processing this huge amount of data for decision-

making, which becomes a major concern in many 

domains, especially in the diagnosis field. Several 

techniques have emerged for processing and 

extracting information from these data such as 

association, clustering, regression, and classification 

rules [6]. We used in this paper, the Rule-Based 

classification that consists in organizing big sizes of 
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data to provide contrary to other classical techniques, 

highly interpretable results making easy the 

exploitation of the obtained classification. Rule 

based-classification is a very well-known technique 

and widely used, it was first introduced in 1989 by 

Liu et al. [27]. This classification technique 

encompasses two steps: a learning step (training) and 

a classification step (use). In the learning stage, a 

classifier which is a set of rules defined as: C = {R1, 

R2,...Rn}, is constructed by comprehending the 

training data. Every classifier rule includes an 

antecedent and a resultant. The resultant part 

portrays the category of attributes of the Cr [28]. The 

structure of a Cr is shown in the illustration below:                                      

  Term   

 

If = (D=O) and If (E=P) and If (F=X) then Class = Y 

             

            Antecedent                                            Resultant 

 

3.2. Overview of the Discrete Equilibrium 

Optimizer Algorithm 

The EOA is an innovative meta-heuristic algorithm 

suggested by Faramarzi et al. [8]. This new 

algorithm draws inspiration from physics and relies 

on dynamic source and sink models, it is a powerful 

tool that has shown its superiority to solve 

continuous optimization problems. In other respects, 

FDD investigated in this study is considered as a 

discrete problem. Therefore, we propose to use the 

IDEOA for TEP diagnostics, which shows a good 

performance to provide adaptive, interpretable and 

computationally efficient solution for decision-

making in diagnostics. Its ability to enhance both the 

precision and the explanation of diagnostic model, 

and handling high-dimensional data with avoiding 

being trapping in local optima makes it a good choice 

for this study. In follows, we consider to describe 

some outlines of the DEOA introduced in [6]. 

Authors of the DEOA suggested the following 

new discrete operators {©x%, ⊘, ⊖ and ⊗} to 

adapt the particle’s position update equation to 

discrete problems. Then, the update position is 

defined as in Equation (1). 

𝐶𝑖+1 = 𝐶𝑒𝑞©50%((𝐺 ⊘ 𝜆)©𝐹%((𝐶𝑖 ⊖ 𝐶𝑒𝑞))(1) 

with 𝐶𝑖 and 𝐶𝑖+1 represent the current and the new 

particle position vectors respectively, 𝐶𝑒𝑞  is the 

equilibrium position selected arbitrary from the 

equilibrium pool vector. The Equilibrium pool 

vector is composed of the first fourth better particles 

in the population. 𝜆 is a stochastic discrete vector, 

and the parameter Git denotes the rate of generation 

that can be mathematically represented as shown in 

Equation (2) given in [6]. 

𝐺𝑖𝑡 = {
𝐺0

𝑖𝑡                  if r > F/100

|1 − 𝐺0
𝑖𝑡|     else                   

 (2) 

Here, the notation |.| denotes the absolute value; F 

indicates the exponential parameter calculated using 

Eq. (4). r a variable that signifies an arbitrary number 

between [0,1] and G0 it is calculated as in Equation 

(3) from [6]. 

𝐺0
𝑖𝑡 = 𝑋𝑒𝑞

𝑖𝑡 ⊖ (λ ⨂ 𝑋𝑖
𝑖𝑡)                 (3) 

 Fit = f(it) =  
(N−it)2

N2  × 100              (4)  

Here, N denotes the extreme number of iterations, 

and it indicates the actual iteration of the DEOA. 

The symbols ©(x%) , ⊘, ⊖ and ⨂ in Equations. 

(1) and (3) represent discrete operators that operate 

on discrete vectors [6], and their definitions are as 

follows: 

 

3.2.1 The ©50% operator 

This operator is used to combine two discrete 

vectors in order to create two new additional discrete 

vectors. For obtaining the first one, we have to pick 

the first segment from the first vector and 50% last 

segments from the other one. Then, to get the second 

vector, we have to choose the second half segment 

from the first one and the first half segment from the 

other one [6]. 

 

3.2.2 Discrete subtraction (⊖) operator    
X3 = X1 ⊖ X2 =

{

 X1           if X1[1] = 1 and X2[1] = 0                                              

X3[1] = 0 and X3[2] = X1or X2 randomly if X1[1] = X2[1]

 X1 or X2 randomly        if X1[1] = 0 and X2[1] = 1                  
                                                                                                                    

                                                                              (5) 

 

3.2.3 Discrete division (⊘) operator 
X3 = X1 ⊘ X2 =

{

X1                                     if X1[1] = 0                              
X2                                     if X1[1] = 1 and X2[1] = 1  
X1 or X2 randomly       if X1[1] = 1 and X2[1] = 0 

       

            (6) 

 

3.2.4 Discrete multiplication (⨂) operator 
X3 =  X1⨂ X2 =

 {

X1                                    if X1[1] = 0                            
X2                                     if X2[1] = 0                           
X1 or X2  randomly   if X1[1] ≠ 0 and X2[1] ≠ 0

              (7) 

where, X1, X2, and X3 are discrete vectors having 

the structure provided in Fig. 2    

The pseudo-code of Algorithm 1 depicts the 

particulars of the DEO algorithm. At first, all 

particles are initialized randomly, then the particles 

are displaced in the search space using the update 

function defined in Equation (1) and presented in [8].  

 

4. METHODOLOGY 

 

In this section, industrial fault detection and 

diagnosis is carried out through the implementation 

of Artificial Intelligence techniques, an IDEOA and 

rule-based classification are developed in this study 

for extracting necessary information from  system 

Data to give a fault diagnosis model and especially 

for the decision-making, which is a crucial step in 

this field. In this work, based on TEP dataset, a 

classification model is constructed in order to detect 

a faulty situation that may threaten the system. The 

optimization method used here is an IDEOA 

dedicated for generating an explainable fault 

diagnosis model. The whole approach used in this 

work is illustrated in Algorithm 2.  
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Algorithm 1. Improved Discrete Equilibrium Optimizer Algorithm (IDEOA) 

 

Input: Training DataSet (TS), Nb_ Particles, Max_iter 

Output: A classification rule 

{ 

Arbitrary initiate all particle 

Calculate the fitness value of particles by utilizing Equation (9) 

For (t = 1 to Max_iter) 

{ 

Select best particles: Ceq1, Ceq2, Ceq3 and Ceq4  

Ceq avg = the average of Ceq1, Ceq2, Ceq3 and Ceq4  

Ceq = [Ceq1, Ceq2, Ceq3, Ceq4, Ceqavg] 

For (i = 1 to Nb_Particles) 

{ Select one vector from Ceq. 

Calculte the random vector λ. 

Generate the vector F using Equation (4) 

Generate the vector G0
it using Equation (3) 

Generate the vector Git using Equation (2) 

Generate the new particle’s position using Equation (1) 

   } 

Verify whether the new generated position is feasible. 

Calculate the fitness value of the new generated position utilizing Equation (9) 

} 

Returning the finest position as considered as the best rule. 

}.  

Algorithm 2. TEP fault diagnosis model generation methodology 

Input: TEP Dataset 

Output: Evaluation result of the fault diagnosis model 

Begin 

 Pre-treat the TEP Dataset 

 Split TEP Dataset into Training Data and Testing Data 

 If Dataset = Training data 

 Generate the rule-based fault diagnosis model using the optimization method 

 Evaluate the fault diagnosis model 

 Else 

  Dataset = Testing Dataset 

  Evaluate the fault diagnosis model  

 End if 

 Give the result of the fault diagnosis model evaluation 

End. 

 

4.1. Suggested FDD approach 

The rule-based methodology used in this 

research for FDD model generation is comprised of 

two principal parts as represented in Fig. 1. The first 

part implies the pre-treating of the TEP dataset. 

While, the second part consists of using of the 

IDEOA to generate rule discovery problem for FDD 

of the studied system. 

 

4.1.1. Data-set Pretreating 

In the first part, a discretization algorithm is 

applied to the variables of the TEP dataset, for the 

reason that rule-based classification method cannot 

be applied for numerical data and works only on 

categorical ones. Therefore, in this study, we used 

entropy-based discretization method from the Weka 

tool to transform continuous features to discrete 

intervals [29], found in [30]. This method divides 

continuous values in a way as to minimize the 

entropy in each interval, which ensures that each 

interval contains homogeneous classes, thus 

maximizing the preserved information.  The key 

parameters of the entropy-based discretization 

method were configured to fine-tune the 

discretization process. The -B parameter, which 

controls the number of bins (intervals or categorical 

values), was set to 3. Additionally, the -M parameter, 

which specifies the minimum weight of instances per 

bin, was set to -1. We enable also the equal-

frequency binning parameter –F that forces bins to 

contain equal number of instances. Table 2 describes 

the discretized values of all features of the TEP 

dataset using the entropy-based discretization 

method. Each feature is transformed to three 

intervals (Rank1, Rank2 and Rank3). For example, 

the feature ES1 was discretized to the following 

three intervals: interval1 =]-ꝏ, 0.195023], interval2 

= [0.195023-0.249177] and interval3 = [0.249177, + 

ꝏ]. The obtained results are represented in the last 

column of Table 2. 

 

4.1.2. Rule generation 

In the second part, rule generation that aims to 

produce a set of classification rules, resulting a 

classification model that enhances both the precision 

and    the    explanation    of    the    diagnosis    model.  
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Data Pre-treating part 

 

Rule discovery part  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the rule-based methodology used for fault detection and diagnosis

Therefore, the suggested IDEO is called at each 

iteration to create one classifier from the pre-treated 

dataset. 

The process of the second part is unfolds over 

multiple iterations while the original training dataset 

remains not empty. It begins by an empty set of rules 

and initializes the parameters of the IDEOA 

algorithm. The IDEOA is used to generate 

classification rules. At each iteration, the class C 

with the highest number of instances is selected, and 

all instances of this class are transferred to a new 

training dataset, which consists solely of instances 

belonging to the chosen class. Subsequently, these 

instances are removed from the original training 

dataset. The IDEOA algorithm is then iteratively 

executed to generate a classification rule from the 

new training dataset while it remains not empty. 

Once a new rule is generated, it is applied to classify 

the instances in the new training dataset. All 

correctly classified instances are then removed from 

the new training dataset, and the rule is added to the 

rule set. This process stills continuous until the new 

training dataset is empty. The final output of this 

method is a rule-based classifier, which is 

subsequently used to classify new instances. 

 

4.2. IDEOA for rule generation using the OBL 

strategy 

EOA and DEOA have shown good performance 

on several optimization problems [25]. As all meta-

heuristic based optimization techniques, exploration 

and exploitation are the two main strategies 

influencing the search ability of the algorithm [29]. 

In our experimental process, we found that DEOA 

has a good exploitation of the search space, but it 

falls frequently into local optima and cannot find 

well exploration in the search space to obtain good 

results.  

Recently, several population-based optimization 

algorithms explored the use of OBL technique to 

improve their convergence rate [31]-[32]. Therefore, 

we consider use this  technique (OBL) mentioned in 

[30] for the IDEOA algorithm, to avoid being 

trapped in local optima and to escape from this 

premature convergence. In this section, we focus on 

using the OBL strategy into the discrete equilibrium 

optimization meta-heuristic method for modifying 

its global search (search space exploration). Thus, 

DEOA with OBL can explore more search areas 

which directs it to converge quickly to the optimal 

solution. So, a new improved DEOA called IDEOA 

is proposed by adopting the OBL strategy in the 

DEOA. 

The OBL technique is used in the IDEOA in two 

steps: the initial population and when the algorithm 

convergences to a local optimum. 

 

4.2.1. Particle’s position in IDEOA and OBL 

The OBL strategy is called in IDEOA for the 

particle’s diversity improvement and it is defined as 

follows. Let a particle p structured as a 2 N-

dimensions vector [9], the initial vector is a binary 

one that indicates the pertinent features in the 

classification rule, while the second one denotes the 

value of every chosen vector [6]. In this work, we 

propose to generate only the opposite of the first 

vector using Equation (8), while the second vector is 

preserved without modification because it is a 

discrete vector. 

𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒 (𝑝) = 𝑜𝑝 = {
𝑜𝑝[1, 𝑗] = 1 − 𝑝[1, 𝑗]

𝑜𝑝[2, 𝑗] = 𝑝[2, 𝑗]        
     (8) 

In Fig. 2. An example of a particle and its opposite 

is depicted: 

Original particle’s position p 

 1 0 0 1 1 0 1 

3 4 2 1 5 3 4 

Available training 

and testing TEP 

dataset 

Pre-treating to get discrete 

values of TEP data 

• Initialize the parameters 

of the IDEOA 

• Initialize the rule set as 

empty 

• Create a new training data 

from the instances of a chosen 

class C, then eliminate all the 

instances of that class from the 

TS  

 

From the new 

TS generate a 

CR by 

applying the 

IDEOA  

 

Get the generated 

rule and add it to 

the rule set then use 
it to remove all the 

correctly classified 

instances 
 

No 

Yes 

No 

Output a classification model 

in form of a rule set 

Yes 

 

Training 

dataset is 

empty ? 

 

 

New Training 

dataset is 

empty ? 
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 Opposite of p 

 

 
Fig. 2. Opposite of a particle’s position 

 

4.2.2. Fitness function 

The following fitness function is employed to 

assess the quality of each produced solution 

(classification rule). 

𝑂𝑏𝑗_𝐹𝑢𝑛𝑐(𝑅) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
     (9) 

 

4.2.3. IDEOA’s initialization strategy 

IDEOA generates firstly the initial population P 

arbitrary, after that, the opposite population OP is 

calculated from P using the OBL strategy as defined 

in Equation (8) for each particle. Then, the best 

particles from P and OP are chosen, and considered 

as initial population of the algorithm.  

 

4.2.4. IDEOA’s prevention of stagnation in local 

optimum 

When the particles of the population in the 

original DEOA converge to a local optimum, they 

cannot change the search direction. This is noticed 

when the obtained result did not improve during a 

fixed number of iterations. However, in this case the 

particles should displace to another search area to 

find a better result. Thus, an adaptive search 

mechanism is proposed when the particles are 

trapped in local optima. We check after each running 

of the algorithm if there is a number of iterations 

(predefined threshold) without improvement of the 

obtained result; the algorithm concludes that there is 

a trapping situation within the local optima and 

called the OBL to 50% of the population and a 

random re-initialization to the rest of the particles. 

 

4.2.5. Outlines of the IDEOA        

The particulars of the IDEOA are illustrated in 

Algorithm 3. 

 

 

 

 
ALGORITHM 3. Improved Discrete Equilibrium Optimization Algorithm (IDEOA)  

 

INPUT: DataSet (TS), N, Max_iter , MT. // MT means the maximum number of iterations without improvement 

OUTPUT: Classification rule 

{ 

    Randomly generate the population P 

    Generate the opposite population OP by calculating the opposite of each particle in P using the Equation (8). 

    Evaluate the fitness of all particles of P and OP using Equation (9) 

    From P and OP choose N best particles as initial population.  

    Fit = fitness of the best particle 

    K=0 

         For (it = 1 to itmax) 

             If K< MT then 

   Generate the Ceq1, Ceq2, Ceq3 and Ceq4 as the four best particles 

                       If fitness (Ceq1) ≤ Fit  

K=K+1 

                       Else 

K=0 

                       End If 

Calculate Ceqavg as the average of Ceq1, Ceq2, Ceq3 and Ceq4  

Ceq = [Ceq1, Ceq2, Ceq3, Ceq4, Ceqavg] 

For (i = 1 to N) 

                                    From Ceq choose one candidate. 

                                    Arbitrary calculate the vector λ. 

                                    Using Eq. (4) calculate the vector F 

                                    Using Eq. (3) calculate the vector G0it 

                                    Using Eq. (2) calculate the vector Git 

                                    Using Eq. (1) generate the new particle’s position 

                             End For 

 Else 

   

For (i = 1 to N) 

Using Eq. (8) generate the new position // call the OBL strategy 

End For 

End If 

Feasibility verification of the novel generated position. 

Fitness value calculation of the novel generated position utilizing Eq. (9) 

     End For 

Returning the finest rule as considered as the best fitness of the particle position. 

}. 

0 1 1 0 0 1 0 

3 4 2 1 5 3 4 
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4.3. Case study system description 

 

4.3.1. Presentation of the TEP 

Our case study system (TEP) is a realistic 

industrial complex problem and is considered as an 

extensively used benchmark problem in process 

engineering for testing a large scale of process 

control and monitoring technologies. The original 

proposal of this simulated chemical process model 

was made by Downs and Vogel in (1993) [33], 

which includes five fundamental units: a product 

condenser, an exothermic two-phase reactor, a 

separator, a stripper, and a recycle compressor as 

shown in Fig. 3. The process involves four gaseous 

reactants (A, C, D, and E) and inert B which are 

supplied to the reactor in order to create 

2components (G and H), and the undesired 

byproduct F. The reaction equations are listed in 

(10). All of the reactions are exothermic, 

irreversible, and roughly first-order in terms of 

reactant concentrations. [34]. 

Ag + Cg + Dg → G(liq)  

Ag + Cg + Eg → H(liq)                                      (10)                                                                                                                                                                     

Ag + Eg → Fl                                                                             

3Dg → 2Fl  

 

Fig. 3. Flowchart of the TEP [33] 

 

In this study, we use the large sample TEP-data 

obtained from the webpage: 

http://web.mit.edu/braatzgroup/links.html. 

Whereas, the process contains 53 variables: 41 

are measured variables (ES1–ES41), among them 22 

are continuous measured variables while the rest are 

compositions sampled measured variables. The last 

12 ones are considered as manipulation variables 

(EV1–EV12), where, the agitation speed (EV12) is 

eliminated. Although, 21 pre-programmed faults 

(F1-F21) are generated by the TEP simulator, due to 

various disturbances, to mimic various situations of 

the process operation as indicated in Table 1. Among 

these faults; 16 are known faults, while the rest are 

unrecognized. With faults from F1 to F7 are 

involved with a sudden variation in the process 

variable. While, F8 to F12 are related to an arbitrary 

change of some process variables, F13 is a delayed 

drifts in the reaction kinetics and faults F14,F15 are 

related to blocking valves [35].  

According to the system description, and the data 

issued from the system fault analysis found in the 

literature, the system experts concluded that the 

criticality of F4 is very high with a major impact, 

which effects critically the performance of the TEP. 

Hence, the neglect of this effect can be disastrous on 

the functioning of the system, what makes F4 very 

pertinent for our study. 

 
Table 1. Process faults for the TEP simulator [35]. 

Faults Description Type 

F1 A/C Feeding ratio, B 

composition constant  

Sudden variation 

F2 B Constituent, A/C ratio 

constant  

Sudden variation 

F3 D Feeding temp  Sudden variation 

F4 Inlet temp of the 

Reactor cooling water 

(RCW) 

Sudden variation 

F5 Inlet temp of the 

Condenser cooling 

water (CCW)  

Sudden variation 

F6 A Feeding loss  Sudden variation 

F7 C Header pressure loss–

reduced validity  

Sudden variation 

F8 A, B, C Feeding 

consituent  

Arbitrary change 

F9 D Feeding temp  Arbitrary change 

F10 C Feeding temp  Arbitrary change 

F11 Inlet temp of RCW Arbitrary change 

F12 Inlet temp of CCW Arbitrary change 

F13 Reactor kinetics Slow drift 

F14 RCW valve Stuck 

F15 CCW valve Stuck 

F16 / - 

F17 / - 

F18 / - 

F19 / - 

F20 / - 

F21 The stream 4 valve was 

adjusted to the stable 

position 

Constant 

position 

 

4.3.2. TEP data description 

In this paper, we used the benchmark TEP 

dataset for generating a fault detection and diagnosis 

model. For this purpose, two types of data were used: 

Training data to construct the diagnosis model and 

testing data for validating the model. The number of 

total observations generated was 500 in the training 

data for normal operating conditions, with a 

simulation time of 25 hours for each run, but only 

480 observations were used after fault occurrence 

with the normal data matrix was defined as 𝑋 ∈
𝑅480∗52. While, the overall number of observations 

in testing data was 960 with 48 hours as a 

measurement duration and a sampling period of 

three minutes. Therefore, the testing matrix data for 

each fault is given as 𝑋 ∈ 𝑅960∗52 . These training 

and testing data matrixes are consisting of 52 

observation variables, excluding the agitation speed 

http://web.mit.edu/braatzgroup/links.html
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of the reactor’s stirrer, which is eliminated because 

it is constant-valued as mentioned in sub-section 

4.2.1. In this study, the system functioning is 

integral, and all the variables are dependent. For this, 

we have selected the 52 variables because all the 

previous studies found that these 52 variables are 

relevant and they neglected a significant number of 

variables, which are not found in the table. 

Moreover, the principal objective of our study is to 

generate a set of classification rules, these rules are 

characterized by their size and their number of rules. 

The size include the critical variables and exclude 

the irrelevant ones. Therefore, the results obtained 

give us only the variables that have a direct impact 

on F4. Twelve of these variables are manipulated 

variables and 41 are measured ones. Among these 

measurable variables: 22 are continuous measured 

variables and the rest are composition sampled and 

measured variables as specified in Table 2. 

 

5. EXPERIMENTS AND RESULTS 

 

This section aims to study the results of our 

approach and compare it with other well-known 

approaches on the TEP dataset. The dataset has been 

split into two partitions: 80% of instances are used 

for training, while 20% of instances are used for 

testing the rule-based diagnosis model. The 

proposed approach was developed and implemented 

using Weka tool and Java programming languages. 

The obtained results are yielded in this section; 

at first, we used to calculate the accuracy function to 

determine the percentage of the classified instances; 

then we compare the obtained results in this paper 

with results of the DEOA version. In addition, rule 

number and rule size were calculated to elucidate the 

quality of our approach. At last, the importance 

value of each feature was calculated in order to 

choose the pertinent variable that affect fault F4 

occurrence, and we attempt to compare our results 

with other benchmark algorithms results.  

 

5.1. IDEOA evaluation and parameter setting 

For evaluating the performance of our approach 

we calculate the commonly accuracy function that is 

considered as the important metric used in literature 

[9], and provided in Equation (11): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
                    (11) 

Other criteria were used in this study to assess the 

interpretability of the fault diagnosis model 

generated by our approach. These criteria include the 

number of rules, which defines the overall size of the 

classifier, and the rule size. A smaller number of 

rules generally indicates a more compact and 

efficient classifier, reducing computational 

complexity and enhancing generalization. 

Meanwhile, the size of individual rules determines 

the level of detail and specificity in fault 

classification, with shorter, more concise rules 

contributing to better readability and interpretability. 

Additionally, the trade-off between classifier 

size and rule complexity plays a crucial role in 

evaluating model performance. A large number of 

complex rules may improve classification accuracy 

but could lead to reduced interpretability. 

Conversely, a smaller rule set may enhance 

efficiency but risks losing important classification 

details. Thus, achieving an optimal balance between 

these factors is essential for developing an effective 

and explainable fault diagnosis system. To further 

validate our approach, we compared these criteria 

with benchmark models to assess improvements in 

rule conciseness and classification accuracy. 

    
5.1.1. DEOA and IDEOA comparison 

In this sub-section, the classification accuracy is 

calculated to evaluate the performance of the used 

approach of this paper. This performance measure 

was also used to compare the results of DEOA to 

those of the IDEOA, in order to find which 

algorithm’s parameters allow us to obtain the best 

accuracy. To get best values, the experiment was 

conducted for nine times; at each time we change the 

number of particles (50-100-200), and for each 

particle increase the number of iterations (10-50- 

100). The evaluation results are expressed in Table 

3. 

From Table3, it is clear that our proposed 

algorithm (IDEOA) achieves best values of accuracy 

in most cases; it scored the highest accuracy of 

95.47% using values of 100 for the number of 

particles and 50 for the number of iterations. In the 

other hand, it is denoted that at each time we run the 

DEOA by increasing the number of particles and the 

number of iterations, we are trapped in the problem 

of stusking in the local optimum. So, the DEOA 

cannot improve the obtained results. Therefore, it is 

quite obvious that the utilization of the suggested 

algorithm IDEOA helps in reaching better results by 

escaping from local optima. 

5.1.2. Generated rules  by using IDEOA 
As shown in Table 4 our proposed algorithm 

gives a classification model, which consists of 16 

rules (6 rules belong to a normal operation of the 

system and the rest of rules shows the fault 

occurrence F4), with a mean number of terms of 

6.62. These results reveal that the approach used in 

this study is very efficient in generating accurate and 

short rules, which make it an explainable approach. 

For example, according to the rule 11 in Table 4 a 

fault can occur when the Reactor Temperature is less 

than 120.43°C; the Purge Rate is between 0.33132 

and 0.35293kscmh; the Product Sep Temp is 

between 79.953 and 80.334°C; the Separator 

Cooling Water Outlet Temp is less than 

77.154667°C; Component A is between 32.089 and 

32.526, and Component E is less or equal to 

18.755667. 
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Table 2. TEP dataset variables description with their discrete values [36] 

Variables Type Description Ranks 

Rank 1                              Rank2                               Rank3 

ES1  

C
o

n
ti

n
u
o

u
s 

P
ro

ce
ss

 M
ea

su
re

m
en

ts
 

A Feeding  ≤0.195023                      [0.195023-0.249177]          ≥0.249177  

ES2  D Feeding  ≤3633.5                        [3633.5-3682.6]                 ≥3682.6 

ES3 E Feeding  ≤4458.366667    [4458.366667-4526.833333]       ≥4526.833333 

ES4 A and C Feeding  ≤9.3008                         [9.3008-9.473]                  ≥9.473 

ES5 Flow Recycling  ≤26.731                         [26.731-27.13]                  ≥27.13 

ES6 Rate of Reactor Feeding  ≤42.118333             [42.118333-42.500667]          ≥42.500667 

ES7 Pressure of Reactor ≤2702.633333     [2702.633333-2712.866667]      ≥2712.866667 

ES8 Level of Reactor ≤74.772667             [74.772667-75.761333]          ≥75.761333 

ES9 Temp of Reactor ≤120.43                         [120.43-120.51]                ≥120.51 

ES10 Purge Rate in  ≤0.33132                     [0.33132-0.35293]              ≥0.35293 

ES11 Temp of Product Separator ≤79.953                          [79.953-80.334]               ≥80.334 

ES12 Level of Product Separator ≤49.165                          [49.165-50.84]                 ≥50.84 

ES13 Pressure of Product Separator ≤2631.066667      [2631.066667-2641.533333]     ≥2641.533333 

ES14 Underflow of Product Separator  ≤23.8283                  [23.828333-25.757667]         ≥25.757667 

ES15 Level of the Stripper ≤48.738                          [48.738-50.327]               ≥50.327 

ES16 Pressure of the Stripper ≤3099.733333      [3099.733333-3109.366667]     ≥3109.366667 

ES17 Underflow of the Stripper  ≤22.180333              [22.180333-23.321667]         ≥23.321667 

ES18 Temp of the Stripper ≤65.531333              [65.531333-65.937667]         ≥65.937667 

ES19 Steam Flow of the Stripper ≤226.816667          [226.816667-234.373333]       ≥234.373333 

ES20 Work of the Stripper ≤339.546667          [339.546667-341.323333]       ≥341.323333 

ES21 Outlet Temp of the Reactor 

Cooling Water 

≤94.473333              [94.473333-94.712667]         ≥94.712667 

ES22 Outlet Temp of the Separator 

Cooling Water 

≤77.154667               [77.154667-77.634333]        ≥77.634333 

ES23 

S
am

p
le

d
 P

ro
ce

ss
 M

ea
su

re
m

en
ts

 

Component A  ≤32.089                          [32.089-32.526]               ≥32.526 

ES24 Component B  ≤8.842033                  [8.842033-9.031467]           ≥9.031467 

ES25 Component C  ≤26.117333               [26.117333-26.567667]        ≥26.567667 

ES26 Component D  ≤6.8213                           [6.8213-6.9733]              ≥6.9733 

ES27 Component E  ≤18.755667               [18.755667-19.242333]        ≥19.242333 

ES28 Component F  ≤1.643167                   [1.643167-1.681933]          ≥1.681933 

ES29 Component A  ≤32.740333               [32.740333-33.227667]        ≥33.227667 

ES30 Component B  ≤13.767667               [13.767667-13.946333]        ≥13.946333 

ES31 Component C  ≤23.698333               [23.698333-24.338667]        ≥24.338667 

ES32 Component D  ≤1.150613                   [1.150613-1.326107]          ≥1.326107 

ES33 Component E  ≤18.235333                [18.235333-18.799667]       ≥18.799667 

ES34 Component F  ≤2.250567                    [2.250567-2.297233]         ≥2.297233 

ES35 Constituent G  ≤4.7867                             [4.7867-4.8936]            ≥4.8936 

ES36 Component H  ≤2.2186                             [2.2186-2.3077]            ≥2.3077 

ES37 Component D  ≤0.010041                     [0.010041-0.02523]          ≥0.02523 

ES38 Component E  ≤0.82287                         [0.82287-0.83839]          ≥0.83839 

ES39 Component F  ≤0.091435                     [0.091435-0.104042]        ≥0.104042 

ES40 Component G  ≤53.368667                 [53.368667-54.195333]      ≥54.195333 

ES41 Component H  ≤43.715667                 [43.715667-44.310333]      ≥44.310333 

EV1 

M
an

ip
u

la
te

d
 V

ar
ia

b
le

s 

D Feeding Flow  ≤62.563                             [62.563-63.682]            ≥63.682 

EV2 E Feeding Flow  ≤53.429667                 [53.429667-54.230333]      ≥54.230333 

EV3 A Feeding Flow  ≤21.428                             [21.428-25.55]              ≥25.55 

EV4 A and C Flow Feeding  ≤60.4                                    [60.4-62.39]               ≥62.39 

EV5 Compressor Recycle Valve ≤21.471333                [21.471333-22.177667]       ≥22.177667 

EV6 Purge valve  ≤39.244667                [39.244667-41.898333]       ≥41.898333 

EV7 Flow of the Separator Pot Liquid  ≤35.642667                [35.642667-40.572333]       ≥40.572333 

EV8 Flow of the Stripper Liquid 

Product  

≤43.613                            [43.613-47.291]             ≥47.291 

EV9 Stripper Steam Valve  ≤46.657667                [46.657667-48.549333]       ≥48.549333 

EV10 Flow of the Reactor Cooling 

Water 

≤42.146                            [42.146-44.772]             ≥44.772  

EV11 Flow of the Condenser Cooling 

Water  

≤17.228667                [17.228667-19.929333]       ≥19.929333 

                                                                                       

EV12 M%

P 

Agitator Speed               /                                        /                                       / 
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Table 3. DEOA and IDEOA classification accuracy comparison 

Method DEOA IDEOA 

No # Particles # Iterations Accuracy % # Rules Mean size 

of rules 

Accuracy % # Rules Mean size of 

rules 

1 50 10 85.71 86 6.33 82.54 43 5.76 

2 50 50 80.95 87 6.75 85.65 45 5.34 

3 50 100 85.71 78 6.69 87.87 35 6.23 

4 100 10 85.71 77 6.12 90.47 26 6.78 

5 100 50 85.71 67 6.74 95.47 16 6.62 

6 100 100 85.71 68 6.97 95.23 18 6.32 

7 200 10 90.47 61 6.19 95.14 22 6.56 

8 200 50 85.71 56 6.56 95.19 18 5.95 

9 200 100 85.71 56 6.91 95.40 18 6.78 

 
 Table 4. Generated rules using TEP Dataset 

Rule No Extracted rules Class Rule Accuracy % # Terms 

R1 (ES2 ≥3682.6) & (ES4≤ 9.3008) & (26.731≤ ES5 ≤ 27.13) & 

(ES13≤2631.066667) & (339.546667≤ ES20 ≤341.323333) & 

(23.698333≤ES31 ≤ 24.338667) 

C0 10 6 

R2 (74.772667≤ ES8 ≤ 75.761333) & (ES20 ≥ 341.323333) & 

(32.089≤ES23 ≤32.526) & (23.698333≤ES31≤24.338667) & 

(2.250567≤ES34≤ 2.297233) & (EV10 ≤42.146) 

C0 10 6 

R3 (ES3≥4526.833333) & (65.531333≤ES18≤65.937667) & 

(ES20≥341.323333) & (23.698333≤ES31≤24.338667) & 

(ES36≥2.3077) & (21.428 ≤ EV3 ≤ 21.428) 

C0 5 6 

R4 (0.195023≤ES1≤0.249177) & (79.953≤ES11≤80.334) & (26.117333≤ 

ES25≤26.567667) & (ES33 ≥18.799667) & (0.091435≤ES39≤ 

0.104042) & (35.642667≤ EV7 ≤40.572333) & (EV8≥47.291) & 

(EV10 ≤42.146) 

C0 10 8 

R5 (2702.633333≤ ES7 ≤ 2712.866667) & (ES27≤ 18.755667) & 

(1.643167≤ ES28 ≤1.681933) & (4.7867≤ ES35≤4.8936) & 

(46.657667≤ EV9 ≤ 48.549333) & (EV10 ≤ 42.146) & 

(EV11≥19.929333) 

C0 5 7 

R6 (1.643167≤ ES28 ≤ 1.681933) & (23.698333≤ ES31 ≤ 24.338667) & 

(43.715667≤ ES41 ≤44.310333) & (21.428≤ EV3 ≤25.55) & 

(EV8≥47.291) & (EV10 ≤42.146) 

C0 5 6 

R7 (1.643167≤ ES28 ≤1.681933) & (ES32 ≥1.326107) & 

(53.368667≤ES40 ≤54.195333) & (EV1 ≤62.563) & 

(53.429667≤EV2≤54.230333) & (EV4 ≥62.39) & (EV5 ≥22.177667) 

& (EV9 ≥48.549333) & (EV10 ≤42.146) & (EV11 ≤ 17.228667) 

C1 5 10 

R8 (23.828333≤ ES14 ≤25.757667) & (32.089≤ ES23 ≤32.526) & 

(53.368667≤ ES40 ≤54.195333) & (43.715667≤ ES41 ≤44.310333) & 

(35.642667≤ EV7 ≤40.572333) & (EV8 ≥ 47.291) 

C1 10 6 

R9 (0.195023≤ ES1 ≤0.249177) & (4.7867≤ ES35 ≤4.8936) & (0.010041≤ 

ES37 ≤0.02523) & (0.82287≤ ES38 ≤0.83839) & (43.715667≤ ES41 

≤44.310333) & (53.429667≤ EV2 ≤54.230333) 

C1 5 6 

R10 (3633.5≤ ES2 ≤3682.6) & (ES16 ≥3109.366667) & (ES27 ≤ 

18.755667) & (2.250567≤ ES34 ≤ 2.297233) & (0.82287≤ ES38 

≤0.83839) & (ES39 ≤ 0.091435) & (EV11 ≤ 17.228667) 

C1 5 7 

R11 (ES9 ≤120.43) & (0.33132≤ ES10 ≤0.35293) & (79.953≤ ES11 

≤80.334) & (ES22 ≤77.154667) & (32.089≤ ES23 ≤32.526) & (ES27≤ 

18.755667) 

C1 5 6 

R12 (9.3008≤ ES4 ≤9.473) & (26.731≤ES5≤27.13) & (ES13 ≥ 

2641.533333) & (ES29≤32.740333) & (ES41≤43.715667) & 

(EV11≥19.929333) 

C1 5 6 

R13 (ES10 ≤ 0.35293) & (ES29 ≤2.740333) & (0.82287≤ ES38 ≤0.83839) 

& (ES39 ≥ 0.104042) & (ES41 ≤ 43.715667) & (EV10 ≥44.772) 

C1 5 6 

R14 (32.089≤ ES23 ≤32.526) & (ZS27≤18.755667) & (23.698333≤ ES31≤ 

24.338667) & (EV5 ≥22.177667) & (43.613≤EV8≤47.291) & (42.146≤ 

EV10 ≤44.772) 

C1 5 6 

R15 (ES18 ≤ 65.531333) & (ES19 ≤ 226.816667) & (6.8213 ≤ ES26 ≤ 

6.9733) & (0.82287 ≤ ES38 ≤ 0.83839) & (EV10 ≥ 44.772) & 

(17.228667 ≤ EV11 ≤ 19.929333) 

C1 5 6 

R16 (ES28 ≥1.681933) & (18.235333≤ ES33 ≤18.799667) & (0.010041≤ 

ES37 ≤0.02523) & (ES41 ≤ 43.715667) & (EV1 ≤62.563) & 

(21.471333 ≤ EV5 ≤22.177667) & (EV8 ≥ 47.291) & (46.657667≤ 

EV9≤48.549333) 

C1 5 8 

Mean  6.625 
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a. Normal functioning  b. abnormal functioning of EV10 

5.1.3. Feature Importance 

In Table 5. We present the importance value of 

each variable in the TEP dataset, derived from the 

classifier rule of the diagnosis model obtained in this 

study by using the IDEOA. As indicated in Table 5, 

the Reactor Cooling Water Flow is the crucial factor 

in identifying fault F4, which is associated with a 

sudden variation in the inlet temperature of the 

RCW. Thus, when fault F4 occurs we can notice a 

high disturbance in the variable EV10, which 

indicates a significant rise in the flow of the RCW. 

In addition, we can see that other variables are 

affected by the fault F4 occurrence like ES41, EV11 

and others. The rest of variables remain almost 

steady after the fault occurrence, so, a small 

deviation can be found between the faulty status and 

the standard operating conditions. The contribution 

plots of Fig. 4, using Matlab12; shows the 

appearance of fault F4 using the training and testing 

TEP dataset for critical variables: ES41, EV10 and 

EV11:  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Variation in relevant variables contributing to F4 with normal and abnormal functioning 

 

Fig. 5. Evolution of TEP variables  

0 500 1000 1500
42

42.5

43

43.5

44

44.5

45

45.5

0 500 1000 1500
42

42.5

43

43.5

44

44.5

45

45.5

a. Normal functioning 

 

b. abnormal functioning of ES41 

0 500 1000 1500
10

12

14

16

18

20

22

24

0 500 1000 1500
12

14

16

18

20

22

24

a. Normal functioning 

 
b. abnormal functioning of EV11 



DIAGNOSTYKA, Vol. 26, No. 2 (2025) 

Benbrahim M, Hamaidi B, Haouassi H, Mahdaoui R, Mouss L-H.: Explainable fault detection and … 

14 

Fig. 6. Evolution of Es18 and Ev10 

 

Table 5. Importance value of each characteristic in the IDEOA-based classifier created for TEP diagnosis 

 

5.2. Comparison of the IDEOA with other 

approaches 

To prove the efficiency of our proposed 

approach; we compare the results obtained by the 

IDEOA with other benchmark algorithms. The 

proposed approach was applied to the TEP dataset to 

generate a diagnosis rule-based classification model. 

For this comparison, we assess the classification 

accuracy of each approach for fault F4. The results 

of comparison are indicated in Table 6; from the 

obtained results, we can notice that the suggested 

IDEOA exhibits the highest accuracy in solving the 

problem of detection and diagnosis of fault 4 with a 

best value of 95.47%. In contrast, LAD (Logical 

Analysis Data), also showed a high accuracy of 

95.04%. For the rest of approaches results, Random 

Tree achieves an accuracy of 89.55%, 76.33% was 

obtained by SVM, ANN had an accuracy of 69.44% 

while, ZeroR had the weakest value of 49.75%. 

At last, as shown in this table, the result reported 

in the literature by [15], using Deep Learning 

DDSAE approach; is approximately close to our 

result. The difference between using DL approaches 

and the meta-heuristic methods (SWARM); is that 

our approach is particularly more efficient, ideal and 

faster in giving solutions for dynamic optimization 

problems, and it can provide better overall accuracy 

by avoiding local minima. So, the used approach in 

this manuscript outperforms the approach used in 

[15] in term of time of execution, because of its 

simplicity, robustness, and the low dependence of 

data. In addition, its generated rules are easy to 

understand by the reader contrary to the results of DL 

approaches, which are poorly interpretable with 

limited explanations for critical applications. Unlike 

other algorithms like DL approaches, our approach 

does not require modelling that is heavy and take a 

lot of time to be implemented. 

Therefore, in this section, the results obtained by 

our algorithm showed its superiority in solving the 

problem of fault detection and diagnosis of F4 

compared it to other algorithms in the literature. Fig. 

5 represents the bar chart of the accuracy obtained by 

our method and other methods. 

 
Table 6. Accuracy value obtained by our method 

compared to other methods 

Method Reference Accuracy % 

IDEOA  Our approach 95.47 

LAD [37] 95.04 

SVM Weka tool 76.33 

ANN Weka tool 69.44 

ZeroR Weka tool 49.75 

RandomTree Weka tool 89.55 

DL DDSAE [15] 99.7 

 

No Characteristi

c  

Importanc

e value 

(%) 

 No Characteristi

c 

Importanc

e value 

(%) 

 No Characteristi

c 

Importanc

e value 

(%) 

1 ES1 1.89%  19 ES19 1.89%  37 ES37 1.89% 

2 ES2 1.89%  20 ES20 3.77%  38 ES38 3.77% 

3 ES3 0.94%  21 ES21 0  39 ES39 2.83% 

4 ES4 1.89%  22 ES22 0.94%  40 ES40 1.89% 

5 ES5 1.89%  23 ES23 3.77%  41 ES41 5.66% 

6 ES6 0  24 ES24 0  42 EV1 0.94% 

7 ES7 0.94%  25 ES25 0.94%  43 EV2 1.89% 

8 ES8 0.94%  26 ES26 0.94%  44 EV3 1.89% 

9 ES9 0.94%  27 ES27 3.77%  45 EV4 0.94% 

10 ES10 1.89%  28 ES28 3.77%  46 EV5 2.83% 

11 ES11 1.89%  29 ES29 1.89%  47 EV6 0 

12 ES12 0  30 ES30 0  48 EV7 1.89% 

13 ES13 1.89%  31 ES31 4.72%  49 EV8 4.72% 

14 ES14 0.94%  32 ES32 0.94%  50 EV9 2.83% 

15 ES15 0  33 ES33 1.89%  51 EV10 7.55% 

16 ES16 0.94%  34 ES34 1.89%  52 EV11 4.72% 

17 ES17 1.89%  35 ES35 1.89%     
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Fig. 5. Bar chart of the accuracy obtained by our 

method and other methods 

 

6. CONCLUSION 

 

In this study, we present an improved approach 

of the optimization method “DEOA” adapted to the 

field of FDD of industrial systems, which was used 

to generate accurate rules from the TEP dataset. The 

proposed approach was improved by adopting the 

OBL technique, allowing our algorithm to get best 

solutions with high accuracy, and by escaping local 

optima.  This IDEOA is considered as a powerful 

method; based on the idea of the collaboration 

between simple agents to solve complex and 

optimized problems. Each agent follows a simple 

rule, to address the complex problem in a distributed 

manner. However, applying this method to problems 

involving complex fault scenarios with larger 

datasets and a high-dimensional search space, may 

affect the ability of search agent parameters, and the 

coordination between them becomes problematic. In 

addition, as the size of the problem and datasets 

increase, the iterations also increase and it could 

become expensive to analyze the behaviors of these 

large groups of agents, in terms of computing 

resources and computational time. Despite these 

limitations, the IDEOA shows a great performance 

for many types of problems, especially those 

requiring robust and distributed solutions, and 

becomes a key factor allowing better management of 

the system complexity increasing. 

The obtained results of our experiments consist 

of 16 classification rules, six of them belong to a 

normal operating conditions and the rest reveals the 

fault F4 occurrence. These results shows that our 

algorithm surpasses other algorithms in terms of 

classification accuracy with a value of 95.47%. The 

power of this algorithm is in generating interpretable 

rules with fewest terms that made the generated 

diagnosis model more explainable making it a 

powerful tool for investigating the pattern of a fault 

and elucidating its causes. Ultimately, the obtained 

results of this study demonstrates the applicability 

and the explainable ability of the suggested approach 

in the domain of FDD of industrial systems. 

Our work’s next direction will focus on two aspects: 

at first, as such, our approach needs additional 

validation on real world problems; so we consider 

applying it for real industrial datasets systems such 

as turbines and heat exchangers, to treat the problem 

of feature extraction in FDD. At second, we intend 

to link our proposed approach to other practical 

swarm optimization in order to enhancing its 

performance. 
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