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Abstract 

Traditional fault diagnosis methods, such as Time-Domain Reflectometry and Frequency-Domain 

Reflectometry, often struggle to handle complex fault signals and have limitations in accuracy and real-time 

performance. This research aims to develop a more effective cable fault diagnosis model that combines wavelet 

transform and fuzzy reasoning to improve detection accuracy and real-time performance. The proposed model 

uses wavelet transform for multi-scale decomposition of fault signals, extracting high-frequency and low-

frequency features, while the fuzzy reasoning system classifies and diagnoses the fault signals based on a preset 

rule base. Experimental results show that the model achieves high accuracy in identifying various fault types, 

including short circuit, grounding, open circuit, and partial discharge, with a short circuit fault accuracy of 

94.5% and an average diagnosis time of 0.8 seconds. The model also demonstrates strong robustness under 

noise interference, maintaining over 90% classification accuracy even at a noise intensity of 20 dB. Compared 

to traditional methods, the model excels in handling complex faults and multiple signals while maintaining high 

noise resistance. Future research will focus on enhancing real-time performance, improving rule base design, 

and expanding the model’s ability to handle multi-fault scenarios. 
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List of Symbols/Acronyms 

TDR - Time-Domain Reflectometry 

FDR - Frequency-Domain Reflectometry 

WT - Wavelet Transform 

FIS - Fuzzy Inference System 

SNR - Signal-to-Noise Ratio 

SC - Short Circuit 

GF - Ground Fault 

OC - Open Circuit 

PD - Partial Discharge 

HFE - High-Frequency Energy 

LFE - Low-Frequency Energy 

x(t) - Original signal 

(t)  - The complex conjugate of the mother wavelet 

function. 

a - Scale factor 

b - Translation factor 

,( )W a b
 - Wavelet transform of the signal at scale aaa 

and translation bbb 

,j kc  - Wavelet transform coefficients 

, ( )j k t - Wavelet function at different scales and 

translations 

ˆ( )x t - Denoised signal 

kd - Denoised wavelet coefficients 

 λ - Threshold parameter 

( )A x - Membership function of fuzzy set AAA 
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 x - Input variable in fuzzy logic 

 c - Center of the membership function 

 σ - Spread of the membership function 

 y - Inference output in fuzzy logic 

iw - Rule weight in fuzzy inference 

iz  - Output value of each fuzzy rule 

 

1. INTRODUCTION 

 

With the development of modern power systems, 

underground cables are increasingly used in urban 

power supply networks, and their safety and 

reliability are directly related to the stable operation 

of power systems. However, due to the deep burial 

of underground cables, the location of faults is often 

difficult to determine, greatly increasing the 

complexity of fault diagnosis. Traditional fault 

diagnosis methods such as TDR and FDR often have 

limitations in dealing with complex cable fault 

signals, as Laurie pointed out, including low 

accuracy and poor real-time performance [1]. 

Therefore, there is an urgent need to develop new 

fault diagnosis methods based on emerging 

technologies. 

Researchers worldwide have conducted 

extensive studies on cable fault diagnosis 
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techniques. In traditional methods, many scholars 

have employed time-domain and frequency-domain 

analysis to locate cable faults. However, the primary 

issue with these methods is their suboptimal 

performance when handling complex cable signals, 

particularly nonlinear and non-stationary fault 

signals. As pointed out by Feng and Kumar, 

traditional methods often fall short in terms of 

accuracy and efficiency, especially when dealing 

with such intricate and dynamic fault characteristics 

[2, 3]. 

In recent years, WT has been widely applied to 

cable fault diagnosis [4]. Yan et al. and Wang 

reviewed the use of WT in diagnosing rotating 

machinery faults, emphasizing its unique advantages 

in time-frequency analysis [5]. Similarly, Mo et al. 

and Wang proposed a modified WT method based 

on cyclic content ratio, significantly improving the 

accuracy of bearing fault diagnosis [6, 7]. In cable 

fault diagnosis, Zhang et al. and Xu introduced a 

precise cable defect location method based on FDR, 

which enhanced the accuracy of fault detection [8, 

9]. 

In terms of fuzzy reasoning, Shao et al. and 

Zhang employed intuitionistic fuzzy sets and 

correlation matrices to propose a new power system 

fault diagnosis method, demonstrating its 

effectiveness in managing complex system faults 

[10, 11]. In addition, Guo et al. utilized case-based 

reasoning and fuzzy association rule mining 

techniques in transformer fault diagnosis, achieving 

promising results [12]. Liu et al. also reported 

excellent results in related fault diagnoses [13]. 

Domestically, Wu et al. conducted online 

monitoring of cable insulation by injecting chirp 

signals and proposed a diagnostic method based on 

resonance frequency analysis, significantly 

enhancing fault detection sensitivity [14]. Feng et al. 

introduced a decision support-based monitoring 

method for mine cable fault diagnosis and validated 

its effectiveness in the mining environment [15]. 

Huang et al. demonstrated the high efficiency of 

wavelet packet transform in signal processing and 

showed that WNN-based fault-tolerant diagnosis 

methods perform well in analog circuit fault 

diagnosis [16]. 

Despite significant advancements, some 

challenges persist. WT, as a time-frequency analysis 

tool, effectively handles non-stationary signals and 

has been widely applied in various signal processing 

fields [17]. Meanwhile, FR plays a crucial role in 

handling uncertain information and is essential for 

cable fault classification. Combining WT with FR 

not only facilitates the extraction of multi-scale 

features from cable fault signals but also enables 

intelligent fault diagnosis through fuzzy reasoning, 

presenting a new solution for accurate cable fault 

diagnosis. The integration of wavelet transform and 

fuzzy reasoning offers a potential approach to 

solving the aforementioned issues. Gubarevych et al. 

systematically reviewed the methods for diagnosing 

stator winding insulation in asynchronous motors 

and proposed new approaches, which provide 

valuable insights for cable fault diagnosis [18]. 

Therefore, the integration of WT and FR offers a 

potential solution to address the shortcomings of 

existing diagnostic methods and warrants further 

exploration. 

Based on the current state of research both 

domestically and internationally, this paper aims to 

diagnose cable faults using the combination of WT 

and FR. WT is employed to decompose the multi-

scale features of cable fault signals, and related 

features are extracted. A fuzzy logic-based fault 

classification system is designed to tackle the 

problem of fault type determination. By integrating 

WT and FR, a comprehensive diagnostic model is 

constructed and validated for its effectiveness in 

real-world cable fault diagnosis. The research results 

can provide technical support for the rapid location 

and repair of cable faults, reduce grid maintenance 

costs, and improve the operational efficiency of the 

power system. Therefore, the proposed diagnostic 

method has important practical application value for 

fault management and maintenance optimization in 

power systems. 

The paper is organized as follows: the 

introduction outlines the research background, 

motivation, and key gaps. The theoretical foundation 

explains the principles of wavelet transform and 

fuzzy inference system. The methodology section 

details the design and implementation of the 

proposed model, followed by results and 

performance evaluation through simulations. 

Finally, the conclusion discusses challenges, future 

improvements, and practical implications. While 

laboratory results are promising, future work will 

focus on enhancing real-time performance, 

optimizing the rule base, and expanding diagnostic 

capabilities for multi-fault scenarios in real-world 

applications. 

 
2. THEORETICAL FOUNDATION 

 
2.1. Overview of Wavelet Transform Theory 

 

2.1.1. Basic Concept of Wavelet Transform 

The WT is a powerful mathematical tool for 

signal analysis that decomposes a signal into various 

frequency components, allowing the study of its 

characteristics over time. Yan et al. highlighted that 

WT effectively captures the time-frequency 

characteristics of fault signals through multi-scale 

decomposition [4]. The fundamental concept of WT 

involves generating a series of wavelet functions by 

translating and scaling a mother wavelet function. 

These wavelets can analyze the local characteristics 

of the signal at different scales, thereby detecting 

local anomalies in fault signals. 

The WT is mathematically expressed as shown in 

equation (1). 

 ( ) ( ) (, )
t b

W a b x t dt
a

 




−

−
=   (1) 
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In this formula, ( )x t  is the original signal,  is the 

mother wavelet function, a  is the scale factor, b  is 

the translation factor, and (t)   represents the 

complex conjugate of the mother WT. Mo et al. 

stated that this formula can decompose a signal into 

different frequency components and time windows, 

providing multidimensional information about cable 

fault signals [6]. 

 

2.1.2. Basic Concept of Wavelet Transform 

The key to WT lies in the selection of the wavelet 

basis function. Different mother wavelets have 

different time-frequency resolutions, so selecting the 

appropriate wavelet basis function is crucial for 

different types of signal processing. Mo et al. pointed 

out that Haar wavelet and Daubechies wavelet are 

two commonly used wavelet basis functions, with 

the former being suitable for signals with sudden 

changes and the latter being more appropriate for the 

analysis of smooth signals [6]. By using these 

wavelet basis functions, cable fault signals can be 

effectively decomposed at multiple scales, extracting 

features at different frequencies. 

MRA is a key feature of WT, enabling the 

analysis of both detailed and overall structures of a 

signal at varying scales. The fundamental process of 

MRA is expressed in formula (2). 

 , ,,( ) ( )j k j k

j Z k Z

x t c k t
 

=  (2) 

Among them, 
,j kc  represents the WT 

coefficients, and 
, ( )j k t  refers to the wavelet 

functions at different scales and translations. This 

process effectively separates different frequency 

components of the cable fault signals, providing a 

basis for precise fault location. 

 

2.1.3. Application of Wavelet Transform in 

Signal Processing 

The WT is widely applied in signal processing, 

particularly in fault signal feature extraction and 

noise reduction. Qin et al. noted that in cable fault 

diagnosis, WT can effectively detect abrupt changes 

and frequency variations in fault signals, which are 

often linked to physical damage in the cable [19]. By 

decomposing the signal using WT, the exact timing 

and frequency components of the fault can be 

identified, allowing for the determination of the fault 

type and severity. 

The WT also provides significant advantages in 

noise reduction. Hsueh et al. proposed that actual 

cable fault signals are often accompanied by 

substantial noise, particularly in complex 

electromagnetic environments. Through wavelet 

threshold denoising techniques, noise can be 

effectively removed while preserving the useful 

information in the fault signal [20, 21]. This 

denoising technique commonly employs soft or hard 

thresholding, filtering the detail coefficients 

obtained from wavelet decomposition by setting a 

threshold, thereby achieving signal denoising. The 

formula is given by (3). 

ˆ( ) ( ),k k

k

x t d t Where= 
,

,

0,

k k

k k k

x ifx

d x ifx

otherwise

 

 

− 


= +  −



(3) 

Among them, ˆ( )x t  is the denoised signal, 
kd  

represents the denoised wavelet coefficients, and   

is the threshold parameter. This method can 

significantly improve the SNR of cable fault signals. 

 

2.2. Overview of Fuzzy Reasoning Theory 

2.2.1. Basic Concept of Fuzzy Logic 

Fuzzy logic is a mathematical method used to 

deal with uncertainty and vagueness by introducing 

the concept of membership degrees to represent the 

fuzziness of things. Unlike classical binary logic, 

fuzzy logic allows the value of a variable to 

continuously vary between 0 and 1, which better 

simulates the uncertainty present in the real world. In 

fuzzy logic, the membership function defines the 

degree to which an element belongs to a fuzzy set, 

its formula is given by (4). 

 2

1

1

( )

( )
A x

x c




=
−

+
 (4) 

Among them, x  represents the input variable, c  

is the center of the membership function, and   

denotes the spread of the function. The core strength 

of fuzzy logic lies in its ability to manage uncertainty 

using fuzzy sets and rule-based reasoning, making it 

highly applicable in complex areas such as cable 

fault diagnosis. 

 

2.2.2. Components of a Fuzzy Inference System 

An FIS is composed of four main components: 

fuzzification, a fuzzy rule base, an inference engine, 

and defuzzification. These components work 

together to transform inputs into outputs: 

(1) Fuzzification: Converts the precise input data 

into degrees of membership in fuzzy sets. 

(2) Fuzzy Rule Base: Establishes relationships 

between input and output using "if-then" rules. 

(3) Inference Engine: Uses the fuzzy rule base to 

perform fuzzy logic reasoning and generate 

fuzzy outputs. 

(4) Defuzzification: Converts the fuzzy outputs into 

a clear decision or classification result. 

Huo et al. emphasized that the fuzzy rule base 

within the inference engine is critical to the 

performance and diagnostic accuracy of the FIS, as 

the design of the rule base significantly impacts the 

system's effectiveness [22]. The inference process is 

mathematically expressed by formula (5). 

 
1

n

i i

i

y w z
=

=   (5) 

Among them, 
iw  represents the rule weight, and 

iz  represents the output value of each rule. 
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2.2.3. Application of Fuzzy Reasoning in 

Uncertainty Problems 

FIS can handle uncertainty in complex systems, 

making them valuable for cable fault diagnosis. 

Underground cables are subjected to various external 

factors during operation, resulting in significant 

uncertainty and noise in the signals, which increases 

the difficulty of fault diagnosis.Traditional 

deterministic methods typically require high input 

accuracy and perform poorly when dealing with 

fuzzy or uncertain signals. In contrast, FIS can 

process uncertain information, enabling accurate 

fault classification and decision-making even when 

the input data is incomplete or noisy. 

Wang et al. proposed that FIS can map various 

fuzzy characteristics of cable fault signals into 

membership degrees through fuzzification, allowing 

fuzzy logic rules to classify these signals. In cases 

where multiple fault types coexist or signals overlap, 

the inference engine in FIS can effectively 

distinguish between different fault types, ensuring 

diagnostic accuracy [23]. This rule-based reasoning 

mechanism gives the system strong robustness, 

enabling it to handle overlapping fault types and 

produce reasonable outputs even when the signal 

input is unclear. Fuzzy inference systems can also be 

integrated with other intelligent algorithms, such as 

neural networks or genetic algorithms, to further 

enhance their ability to deal with uncertainty. 

Therefore, FIS has unique advantages in cable fault 

diagnosis, particularly in handling uncertainty 

problems. Their flexibility, robustness, and 

scalability make them suitable for complex cable 

fault environments, providing strong support for 

fault diagnosis. 

 

2.3. Integration of Wavelet Transform and 

Fuzzy Reasoning in Cable Fault Diagnosis 

 

2.3.1. Application of Wavelet Transform in Fault 

Feature Extraction 

In cable fault diagnosis, WT effectively extracts 

key features from fault signals, particularly high-

frequency transient signals. WT can decompose the 

cable fault signal into detail coefficients of different 

frequencies, helping identify local anomalies in the 

fault signal. Using multi-resolution analysis, WT 

separates frequency components at varying scales, 

enabling precise fault localization by identifying the 

position of the fault. 

By comparing the different wavelet basis 

functions in Table 1, the most suitable wavelet basis 

function for the characteristics of cable fault signals 

can be selected to optimize the diagnostic process. 

 

2.3.2. Application of Fuzzy Inference System in 

Fault Classification 

The FIS effectively handles the fuzziness and 

uncertainty of signals in fault classification. After 

WT extracts the relevant features, the FIS classifies 

the fault types based on these features. Through the 

establishment of a reasonable fuzzy rule base, fuzzy 

inference can accurately determine the fault category 

even when faced with multiple fault characteristics. 

The inference rules can be expressed by formula (6). 

 1 1 2 2            ,IF x is A and x is A y is B  (6) 

Among them, 
1 2 ,A A  represents the fuzzy set of 

the input signal, and B  represents the output fault 

category. 
 

Table 1. The effect of wavelet basis functions in fault 
feature extraction 

Wavelet 
basis 

function 

Applicable 

range 
Advantages Disadvantages 

Haar 

Signals 

with 
sudden 

changes 

Simple 
computation 

Poor 
smoothness 

Daubechies 
General 

fault 

signals 

Good 

smoothness 

High 
computational 

complexity 

Symlets 
Symmetric 

signals 

Strong signal 

recovery 
capability 

High 

computational 
complexity 

 

2.3.3. Advantages of Combining Wavelet 

Transform and Fuzzy Inference 

The integration of WT and FIS significantly 

enhances the accuracy and real-time performance of 

cable fault diagnosis. WT is used to extract multi-

scale features of fault signals, while the fuzzy 

inference system utilizes these features for 

intelligent fault classification. This combination not 

only handles complex non-stationary signals but also 

addresses uncertainty through fuzzy reasoning, 

resulting in highly accurate fault diagnosis. 

 
3. ANALYSIS OF THE CURRENT STATUS 

OF CABLE FAULT DIAGNOSIS 

 
3.1. Types and Characteristics of Cable Faults 

Cable faults are common issues in power 

systems, particularly in underground cables where 

the complex installation environment and 

maintenance challenges make fault detection and 

diagnosis especially important. To effectively 

classify and locate faults, it is crucial to understand 

the types of faults and the characteristics of their 

signals. 

 

3.1.1. Main Types of Cable Faults 

The common types of underground cable faults 

can be categorized as follows, as shown in Table 2. 

 
Table 2. Common fault types of underground cables 

Fault type Characteristics Signal properties 

SC 
High current 

surge 

Instantaneous high-

frequency signals 

GF 
Conductor 

breakage 

Slow signal changes 

OC 
Conductor-to-

ground contact 

Low-frequency 

components 

PD 
Insulation 

breakdown 

Weak signals, 

sporadic discharge 
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From Table 2, it is evident that SC faults occur 

when the conductive parts of the cable come into 

contact with the ground or adjacent conductors. This 

results in a sudden surge in current, producing strong 

fault signals that typically manifest as transient high-

frequency components. OC faults, on the other hand, 

are caused by a break in the cable conductor, 

preventing current flow. These faults usually lead to 

gradual signal changes without significant current 

fluctuations, making them harder to detect. GF 

occurs when the cable conductor directly contacts 

the ground, forming a ground current. These faults 

are characterized by distinct low-frequency 

components, often accompanied by increased cable 

temperature and current fluctuations. PD faults are 

caused by small arc discharges due to defects in the 

cable's internal insulation layer. This type of fault is 

often difficult to detect in its early stages, as the 

signal is relatively weak, but prolonged 

accumulation can lead to more severe faults. 

 

3.1.2. Characteristics of Cable Fault Signals 

Each type of cable fault generates distinct signal 

characteristics, and these signal features exhibit clear 

differences in both the time domain and frequency 

domain. The characteristics are illustrated in Fig. 1. 

 

 
Fig. 1. Time domain waveform of cable fault signal 

 

Fig. 1 illustrates the typical time-domain 

waveforms of various cable faults. These waveforms 

display distinct differences in pulses, frequency, and 

amplitude under different fault conditions, providing 

a foundation for accurately identifying fault types. 

(1) SC: Triggered by a sudden surge in current, the 

waveform of an SC contains prominent spikes, 

manifesting as transient high-frequency pulses in 

the time domain. 

(2) OC: The waveform of an OC is relatively 

smooth, lacking significant high-frequency 

components. 

GF: GF signals exhibit sustained low-frequency 

oscillations, reflecting the stable flow of ground 

current. 

PD: The waveform of a PD typically consists of 

irregular small pulses caused by minor arc 

discharges within the cable’s insulation layer. 

These distinct waveform characteristics are 

critical for accurately diagnosing and categorizing 

cable faults. Table 3 summarizes these signal 

characteristics, highlighting the different analysis 

methods required for diagnosis. For instance, 

detecting high-frequency pulse signals is key for SC, 

while for PD, the detection system must exhibit high 

sensitivity to capture weak discharge signals. 

Extracting these signal features not only aids in 

identifying fault types but also helps in fault 

localization, providing crucial information for 

repairs. By analyzing these fault signals and 

integrating WT and FIS, cable faults can be more 

precisely identified, and fault classification and 

localization can be effectively achieved based on the 

signal characteristics. 

 
Table 3. Summary of characteristics of cable fault signals 

Fault type 
Time domain 

characteristics 

Frequency 

domain 

characteristics 

SC Sharp peaks 
High-frequency 

components 

GF Gradual changes 
Low-frequency, 

smooth signal 

OC 

Continuous low-

frequency 

oscillation 

Strong low-

frequency 

components 

PD 
Small, irregular 

pulses 

Sporadic high-

frequency 

components 

 

3.2. Traditional Cable Fault Diagnosis Methods 

 

3.2.1. Time-Domain Analysis Method 

The time-domain analysis method primarily 

diagnoses faults by analyzing the variation of cable 

fault signals over time. One of the most commonly 

used time-domain methods is TDR. The basic 

principle of TDR is to inject a pulse signal into the 

cable and monitor the arrival time and amplitude of 

the reflected wave to determine the location and type 

of fault. TDR is highly effective in precisely locating 

common faults such as SC and OC and is particularly 

suitable for medium- to short-distance cable fault 

detection. 

The typical workflow of TDR is as follows: 

(1) Inject a known pulse signal into the cable. 

(2) Detect the signal traveling along the cable and 

identify the reflected wave after the fault occurs. 

(3) Calculate the fault distance based on the time 

delay of the reflected wave. 

Although the time-domain analysis method 

allows quick diagnosis of cable faults, its sensitivity 

to complex fault types is relatively low. It struggles 

to differentiate overlapping signals in the presence of 

multiple fault sources. Moreover, TDR is highly 

sensitive to high-frequency noise and can be easily 
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affected by external interference, which may reduce 

the accuracy of the diagnostic results. 

 

3.2.2. Frequency-Domain Analysis Method 

The frequency-domain analysis method 

diagnoses cable faults by analyzing changes in the 

frequency domain of fault signals. The most widely 

used frequency-domain method is FDR. The basic 

principle of FDR is to inject a series of sine waves 

with different frequencies into the cable and monitor 

the frequency response of the reflected waves to 

identify faults. FDR has higher accuracy in 

identifying multiple fault types, especially for long-

distance cable fault detection. 

The key difference between FDR and TDR is that 

FDR analyzes cable characteristics using frequency 

signals, making it more suitable for handling fault 

signals with complex frequency components. The 

specific workflow of FDR is as follows: 

(1) Inject signals with different frequencies into the 

cable. 

(2) Detect changes in the frequency response, 

particularly in amplitude and phase. 

(3) Identify fault location and type through 

discontinuities in the frequency domain. 

 

3.3. Limitations of Current Cable Fault 

Diagnosis Technologies 

Despite significant advancements in cable fault 

diagnosis technologies, several limitations persist. 

First, in terms of diagnostic accuracy, traditional 

methods like TDR and FDR perform poorly when 

dealing with complex signals. TDR relies on 

reflected signals, and when the signal attenuation is 

high or subject to noise interference, the localization 

accuracy decreases significantly. While FDR is more 

sensitive to high-frequency signals, it is less accurate 

when dealing with low-frequency fault signals. 

Additionally, intelligent diagnostic methods offer 

certain advantages in handling complex fault signals 

but depend heavily on large amounts of training data. 

Misdiagnosis may occur when data is insufficient. 

Another major limitation is diagnostic speed. The 

signal propagation and reflection processes in both 

TDR and FDR introduce delays, leading to poor real-

time performance, particularly in long-distance cable 

scenarios. Furthermore, when multiple faults coexist 

or signals overlap, both methods struggle to 

effectively differentiate between fault sources, 

further limiting their diagnostic efficiency. 

Based on the information in Table 4, current 

cable fault diagnosis technologies require significant 

advancements in both diagnostic accuracy and real-

time performance. In particular, the development of 

robust algorithms is essential to effectively manage 

complex, multi-fault signals, ensuring precise fault 

identification and localization in challenging 

scenarios. 

 

 

 

Table 4. Limitations of cable fault diagnosis 

technologies 

Diagnosis 

method 

Insufficient 

accuracy 

Slow 

diagnosis 
speed 

Limited 

complex fault 
handling 

TDR 

Signal 

attenuation, 

noise 
interference 

Long 

propagation 
time, poor 

real-time 

response 

Difficult to 

distinguish 
multiple 

faults, noise-

sensitive 

FDR 

Poor 

accuracy 
for low-

frequency 

signals 

High 

computational 

complexity, 
slow response 

Weak fault 
signals 

difficult to 

detect, severe 
signal 

attenuation 

Intelligent 

Diagnosis 

Methods 

Relies on 
large 

training 

data, 
accuracy 

drops with 

insufficient 
data 

Long training 
and inference 

time, slower 

real-time 
diagnosis 

Poor 
generalization, 

struggles with 

new or 
complex faults 

 
4. CABLE FAULT DIAGNOSIS BASED ON 

WAVELET TRANSFORM AND FUZZY 

INFERENCE 

 
4.1. Model Design Framework 

 

4.1.1. Wavelet Transform Feature Extraction 

Module 

The primary function of the WT feature 

extraction module is to decompose cable fault 

signals and extract their time-frequency 

characteristics. WT can effectively handle the non-

stationary components in cable fault signals and 

capture the local details of the fault signals through 

multi-scale analysis. 

The specific steps of feature extraction include: 

Step 1: Decompose the fault signal using WT to 

obtain coefficients at different scales. 

Step 2: Select an appropriate wavelet basis function 

to ensure that useful fault features are extracted. 

Step 3: Identify the key information of the fault 

signal based on the energy characteristics of 

different frequency bands. 

After feature extraction, common fault types 

exhibit significant differences across different 

scales. This multi-scale analysis enables clearer 

detection of the characteristic information when 

faults occur. Table 5 demonstrates the effectiveness 

of different wavelet basis functions in fault feature 

extraction. 

By utilizing WT, features such as sudden spikes 

in SC faults or subtle variations in PD signals can be 

extracted with high accuracy. These extracted 

features provide a robust foundation for subsequent 

classification and diagnosis processes. 

 

4.1.2. Fuzzy Inference Fault Classification 

Module 

The FIS fault classification module is designed 

for intelligent classification of the features extracted 



DIAGNOSTYKA, Vol. 26, No. 2 (2025)  

Liu Y.: Wavelet transform and fuzzy reasoning for underground power cable fault diagnosis 

 

 

7 

by WT. This module relies on a fuzzy logic system 

to fuzzify the input feature signals and infer and 

determine the fault type through a pre-set fuzzy rule 

base. 

 
Table 5. The effectiveness of different wavelet basis 

functions in fault feature extraction 

Wavelet 

basis 

function 

Performance in 

fault signal 

analysis 

SuiTab fault 

types 

Haar 
Good at detecting 

abrupt changes 

Short circuit 

faults 

Daubechies 

Provides smooth 

signal 

representation 

General fault 

detection 

Symlets 
Symmetrical, good 

for reconstruction 

Ground and open 

circuit faults 

 

The FIS operates through the following steps: 

Step 1: Fuzzification: The input feature signals are 

converted into membership degrees and 

represented using fuzzy sets. 

Step 2: Fuzzy Rule Base: "If-Then" rules are set 

based on the feature signals, with the rule base 

containing the characteristics of various faults 

and corresponding classifications. 

Step 3: Inference: Fuzzy logic is used to infer the 

fault type by processing the signals through the 

fuzzy rule base. 

Step 4: Defuzzification: The fuzzy output is 

converted into a specific fault category, 

providing a clear diagnostic result. 

This process enables the FIS to handle complex 

and uncertain fault signals effectively, leveraging 

fuzzy rules to intelligently classify faults and 

accurately determine fault types and locations. 

In summary, the cable fault diagnosis model, 

which integrates WT and FIS, functions through two 

collaborative components: feature extraction and 

intelligent reasoning. This approach improves fault 

detection accuracy and efficiency, making it 

particularly suitable for handling complex and multi-

type cable fault signals. 

 

4.2. Model Construction and Implementation 

 

4.2.1. Selection and Optimization of Wavelet 

Transform Parameters 

The selection of the wavelet basis function must 

be optimized based on the characteristics of the 

signal, as different wavelet basis functions yield 

varying performances for different types of fault 

signals. Additionally, the decomposition level of WT 

should be carefully determined according to the 

frequency characteristics of the signal. Excessive 

decomposition levels may lead to increased 

computational complexity, while too few levels may 

result in the loss of critical fault signal information. 

Therefore, the choice of wavelet function is a critical 

factor in optimizing the model. Table 6 outlines the 

wavelet functions selected for this study, along with 

their respective advantages and disadvantages. 

By optimizing the wavelet function and setting 

an appropriate number of decomposition levels, the 

model ensures that key features of the fault signal are 

effectively captured while maintaining 

computational efficiency. 

 
Table 6. Selection and optimization of wavelet basis 

function parameters 

Wavelet 

basis 
function 

Suitable fault 

types 
Advantages Disadvantages 

Haar 

Sudden 

changes 
(short circuit) 

Simple 

computation 

Poor 

smoothness 

Daubechi

es 

General fault 

detection 

Good at 

multi-

resolution 
analysis 

Higher 
computational 

complexity 

Symlets 

Complex 

signal 

reconstruction 

Symmetric, 

good for 
detailed 

analysis 

High 
complexity 

 

4.2.2. Design of the Fuzzy Inference Rule Base 

The core of the FIS lies in the design of its rule 

base. By constructing a well-defined "If-Then" rule 

base, the system classifies faults based on the 

features extracted through WT. Each rule is built 

upon the fuzzified characteristics of the input signal 

and is represented using membership functions. The 

membership degree determines the extent to which 

the input signal belongs to various fuzzy sets. 

The principles for designing the fuzzy inference 

rule base include simplicity of the rules and full 

coverage of the fault categories. 

The rule base in this study is designed according 

to different fault characteristics such as signal 

frequency, energy distribution, and abrupt changes. 

Using fuzzy sets and the rule base, these 

characteristics are classified to determine the fault 

type. 

(1) Input Variables and Fuzzy Sets: 

The input variables for the FIS are derived from 

the features extracted by WT, which include HFE, 

LFE, and the signal variation rate. Each input 

variable is assigned to corresponding fuzzy sets, 

represented by membership functions. Table 7 

presents the input variables and their associated 

fuzzy sets. 

 
Table 7. Input variables and their related fuzzy sets 

Input variable Fuzzy sets 

HFE Low, medium, high 

LFE Low, medium, high 

Signal variation rate Slow, moderate, fast 

 

(2) Rule Base Design 

Based on the previously mentioned input 

variables, a set of rules has been established in the 

rule base to infer fault types. These rules leverage the 

fuzzy sets of HFE, LFE, and signal variation rate to 

classify different types of cable faults. The FIS 

utilizes these rules to analyze the input features and 

make accurate decisions regarding the fault type. 
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Based on the rules outlined in Table 8, the 

classification of fault types follows logical 

reasoning: If HFE is high and the signal variation 

rate is fast, the fault is likely a SC. If LFE is high and 

the signal variation rate is slow, the fault is likely a 

GF. If HFE is low and LFE is high, the fault is 

classified as an OC. If both HFE and LFE are 

moderate, and the signal variation rate is also 

moderate, the fault is identified as a PD. These rules 

guide the FIS in reasoning over the input fuzzified 

signals, producing a fuzzy output that indicates the 

fault type. 

 
Table 8. Fuzzy inference rule base design 

Input conditions 
Output 

condition 

If high-frequency energy is high and 

signal change rate is fast 
SC 

If low-frequency energy is high and 

signal change rate is slow 
GF 

If high-frequency energy is low and 

low-frequency energy is high 
OC 

If both high-frequency energy and 

low-frequency energy are medium and 

signal change rate is moderate 

PD 

 

(3) Defuzzification: 

The fuzzy output generated by the inference 

process is subsequently processed through 

defuzzification. This step converts the fuzzy output 

into a precise fault category, ultimately delivering 

specific diagnostic results, such as SC, GF, OC, or 

PD. Defuzzification ensures that the final output is 

actionable and provides clear fault classification for 

further analysis or repair. 

 

4.2.3. Model Operation Process and Algorithm 

Description 

In the cable fault diagnosis model based on WT 

and FIS, the operation process and algorithm 

description involve five primary steps, from signal 

acquisition to the final fault diagnosis output. Each 

step encompasses algorithmic operations that 

transform cable fault signals into accurate diagnostic 

results. The detailed workflow is as follows: 

Step 1: Signal Acquisition 

Real-time fault signals are collected from 

underground cables using sensors. These signals 

typically contain noise and interference across 

multiple frequency bands, necessitating 

preprocessing and feature extraction in subsequent 

steps. 

Step 2: WT Feature Extraction 

After preprocessing, WT is applied to decompose 

the signal, enabling simultaneous analysis in the time 

and frequency domains. The specific algorithm 

involves: 

Selecting an appropriate wavelet basis function 

based on signal characteristics. 

Performing multi-scale decomposition to extract 

coefficients across different frequency bands. 

Extracting key features from the decomposed 

signal, including HFE, LFE, and signal variation 

rate. 

Step 3: Fuzzification 

Features extracted via WT are input into the FIS 

for processing. The fuzzification process includes: 

Membership function selection: Converting the 

feature values into fuzzy sets using predefined 

membership functions. 

Assigning HFE, LFE, and signal variation rate to 

their corresponding fuzzy sets. 

Fuzzify the feature data by converting precise 

values into fuzzy membership degrees. 

Step 4: Fuzzy Reasoning 

The FIS classifies the fuzzified signal features 

using predefined rules in the fuzzy rule base. The 

reasoning process involves: 

Matching the fuzzy inputs with rules in the rule 

base. 

Use the fuzzy inference engine to reason through 

the matched rules and get a fuzzy output. 

Step 5: Defuzzification 

The output of the fuzzy reasoning system is 

fuzzy, so the defuzzification step converts the fuzzy 

output into a clear fault classification result. The 

commonly used defuzzification method is the 

centroid method, as described by formula (7). 

 
( )

( )

x x dx
y

x dx






=



 (7) 

Defuzzification transforms the fuzzy inference 

results into precise fault classifications. 

Step 6: Fault Diagnosis Output 

The defuzzified results provide the final fault 

type output. Based on these results, the system 

identifies the specific type of cable fault (SC, GF, 

OC, or PD) and offers corresponding fault locations 

and suggested remedial measures. 

The complete process, integrating WT for signal 

processing and FIS for fault classification, allows for 

efficient diagnosis of complex fault signals. The 

system enhances diagnostic accuracy and real-time 

performance, particularly in cases of multiple fault 

types. 

 

4.3. Model Validation and Performance 

Evaluation 

To validate the effectiveness and performance of 

the cable fault diagnosis model based on WT and 

fuzzy inference, a simulation analysis was conducted 

using an experimental dataset. The model ’ s 

performance was compared to traditional fault 

diagnosis methods in terms of accuracy, diagnostic 

speed, and the ability to handle complex faults. 

 

4.3.1. Experimental Dataset Overview 

The experimental dataset was used to evaluate 

the model’s performance. The dataset contains real 

and simulated signals from different cable fault 

scenarios, including: 
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High-frequency transient signals during cable 

short circuits. 

Low-frequency signals when the cable wire is 

broken. 

Low-frequency, stable fluctuation signals 

generated when the conductor comes into contact 

with the ground. 

PD signals in the cable insulation are 

characterized by irregular high-frequency pulses, 

often indicative of minor arc discharges within the 

insulation material. These signals are subtle and 

sporadic, requiring precise detection methods. 

After collecting the fault signals, WT was 

applied for decomposition to extract features such as 

HFE, LFE, and signal variation rate. These extracted 

features served as the input for subsequent fuzzy 

inference and fault classification processes, ensuring 

an accurate diagnosis of fault types. 

The dataset scale is shown in Table 9. 

 
Table 9. Dataset size 

Metric Value 

Sampling frequency 1000 Hz 

Number of short circuit samples 2000 

Number of ground fault samples 2000 

Number of open circuit samples 2000 

Number of partial discharge samples 2000 

Signal duration per sample 2 seconds 

 

4.3.2. Simulation Results Analysis 

The simulation results evaluate the performance 

of the proposed model, highlighting its accuracy and 

classification efficiency when applied to different 

fault types. The combination of WT and FIS 

demonstrates significant improvements in fault 

identification and classification. The key simulation 

outcomes are summarized in Table 10. 

 
Table 10. Simulation results summary 

Faul

t 

type 

Accur

acy 

(%) 

Diagnosis 

speed 

(seconds) 

Noise resistance 

accuracy (at 20 dB, 

%) 

SC 94.5 0.8 92.0 

GF 92.8 0.8 90.5 

OC 91.2 0.8 90.1 

PD 89.6 0.8 91.0 

 

4.3.3. Simulation Results Analysis Translation 

According to Table 10, the model achieves an 

accuracy of 94.5% for short-circuit faults, 92.8% for 

ground faults, 91.2% for open-circuit faults, and 

89.6% for partial discharge faults. These high 

accuracy rates can be attributed to the WT's ability 

to effectively extract both high-frequency and low-

frequency signal features, while the FIS handles the 

uncertainties within these features, enabling efficient 

classification. The model's average diagnosis time 

for each fault classification is 0.8 seconds, making it 

highly suitable for rapid fault location. The 

combination of WT's multi-scale analysis and the 

FIS's efficient classification mechanism allows the 

model to maintain a quick response time, even under 

complex signal conditions. Furthermore, the model 

demonstrates strong robustness against noise 

interference. When the noise intensity reaches 20 

dB, the classification accuracy for short-circuit faults 

remains at 92.0%, for ground faults at 90.5%, for 

open-circuit faults at 90.1%, and for partial 

discharge faults at 91.0%, all maintaining high levels 

of performance. 

The simulation results highlight that the 

proposed model excels in accuracy, real-time 

performance, and noise resistance, making it well-

suited for practical applications in real-world cable 

fault diagnosis scenarios. 

 

4.3.4. Comparison with Traditional Methods 

To assess the advantages of the proposed model, 

this study compares the WT and FIS-based fault 

diagnosis method with traditional TDR and FDR 

techniques. The comparison criteria include 

diagnostic accuracy, diagnostic speed, and the ability 

to handle complex faults. 

According to Table 11, the proposed model 

outperforms traditional methods in all key 

indicators. Thanks to the multi-scale feature 

extraction capabilities of WT and the efficient 

classification of FIS, the diagnostic accuracy of the 

model is significantly higher than that of TDR and 

FDR methods. The average diagnosis time of 0.8 

seconds is notably faster than the traditional 

methods, providing a clear advantage in real-time 

fault detection. In terms of handling complex faults, 

the FIS can process complex and uncertain fault 

signals, giving the model enhanced diagnostic 

capabilities, especially when multiple fault signals 

are present. The experimental results further 

demonstrate that the model exhibits strong noise 

resistance, whereas traditional methods suffer a 

significant decline in diagnostic accuracy under 

noise interference. 

 
Table 11. Comparison of methods 

Method 
Diagnosis 

accuracy 

Diagnosis 

speed 

Complex 

fault 

handling 

Noise 

resistance 

Proposed 

method 
91.0% 

0.8 

seconds 
High High 

TDR 85.5% 
1.5 

seconds 
Low Low 

FDR 87.2% 
1.3 

seconds 
Medium Medium 

 

Through this comparative analysis, it is evident 

that the proposed WT and FIS-based cable fault 

diagnosis model provides significant improvements 

in all aspects of fault detection performance, 

particularly in diagnostic accuracy, speed, and 

robustness to noise. 
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5. CHALLENGES IN CABLE FAULT 

DIAGNOSIS BASED ON WAVELET 

TRANSFORM AND FUZZY INFERENCE 

 
5.1. Limitations in Data Collection and 

Processing 

In cable fault diagnosis, the quality and accuracy 

of data collection directly affect the diagnostic 

effectiveness of the model. However, in complex 

cable environments, signal collection is often 

susceptible to noise interference, such as 

electromagnetic interference and environmental 

noise, which can obscure or distort fault signals. 

Additionally, for long-distance cables or cables 

buried deep underground, the sensitivity of the 

collection equipment may be limited, affecting the 

accuracy of signal collection. Therefore, obtaining 

high-quality fault signals in complex external 

environments remains a significant challenge in data 

collection. 

 

5.2. Complexity in Fuzzy Inference System Rule 

Design 

The FIS relies on a rule base for fault 

classification, and the process of designing the rule 

base is often highly complex. Each fault type rule 

needs to be defined based on a large amount of 

experimental data, especially when dealing with 

multiple fault types and complex fault signals. The 

design and maintenance of the rule base can become 

challenging. Moreover, as the number and 

complexity of fuzzy rules increase with more fault 

types, the inference process may slow down, and rule 

conflicts may arise in practical applications. 

Therefore, simplifying and optimizing the design of 

the rule base is a challenge for fuzzy inference 

systems. 

 

5.3. Real-time and Computational Efficiency 

Issues 

Although the WT and FIS-based model offers 

high diagnostic accuracy, there are still challenges 

concerning real-time performance and 

computational efficiency. The multi-scale analysis 

performed by the WT requires frequent signal 

decomposition and reconstruction, which increases 

computational complexity, especially when dealing 

with long-duration or high-frequency sampled 

signals. This can lead to extended processing times. 

Additionally, the fuzzy inference system, when 

processing a large number of fuzzy rules, can also 

experience extended inference times, particularly 

when the rule base is extensive. Therefore, 

improving the computational efficiency of the model 

to meet real-time fault diagnosis requirements 

remains a key issue. 

 

5.4. Model Optimization 

5.4.1. Wavelet Transform Parameter 

Optimization Strategy 

To address the issues of diagnostic accuracy, 

real-time performance, and computational 

efficiency, further optimization of the model is 

necessary. The performance of WT is highly 

dependent on the selection of the wavelet basis 

function and the number of decomposition layers. 

Optimizing the selection of wavelet basis functions 

can improve the precision of feature extraction. 

Automated selection of wavelet basis functions or 

using adaptive wavelet transform techniques can 

better adapt to different types of fault signals. 

Determining the appropriate number of 

decomposition layers can reduce computational load 

and improve processing speed without 

compromising the quality of feature extraction. 

 

5.4.2. Intelligent Improvement of the Fuzzy 

Inference System 

To reduce the complexity of rule base design, 

intelligent fuzzy rule generation methods can be 

introduced. By using machine learning algorithms to 

automatically generate the fuzzy rule base, the need 

for human intervention can be significantly reduced, 

enhancing the system's adaptability. Genetic 

algorithms or neural networks can optimize fuzzy 

rules, dynamically generating and updating the rules 

based on historical data, reducing rule conflicts, and 

improving the efficiency of the inference process. 

 
6. CONCLUSION AND OUTLOOK 

 

This study presents an efficient cable fault 

diagnosis model based on WT and FIS, achieving 

intelligent classification and rapid fault diagnosis. 

Using WT, the model extracts HFE and LFE 

features, while FIS addresses the limitations of 

traditional methods in handling complex and 

uncertain signals. Experimental results show the 

model achieves 94.5% accuracy for SC faults and an 

average diagnosis speed of 0.8 seconds. Compared 

to traditional TDR and FDR, with slower speeds of 

1.5 and 1.3 seconds and lower accuracy, the 

proposed method performs significantly better in 

accuracy, speed, and handling complex fault 

scenarios. 

The proposed method also shows high noise 

resistance and robustness under multi-fault 

conditions, outperforming TDR (low noise 

resistance and weak fault handling) and FDR 

(medium performance). These results highlight the 

advantages of integrating WT and FIS for precise 

and efficient cable fault diagnosis. 

Despite these promising results, challenges 

remain. The next steps of this study will focus on 

expanding the model's diagnostic capability in multi-

fault and dynamic environments, improving real-

time performance, and enhancing signal collection 

accuracy, especially under severe noise conditions. 
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Future work will also explore integrating advanced 

algorithms, such as machine learning or deep 

learning, to optimize the rule base and enable 

adaptive diagnostics. Additionally, efforts will be 

directed toward validating the model in large-scale 

engineering applications and exploring its scalability 

for more complex power systems. This study 

provides a solid foundation for further research and 

engineering advancements in cable fault diagnosis. 
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