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Abstract 
The present work provides an overview on the selected applications of peridynamics to damage 

modelling and simulations of its propagation in mechanical structures. The theoretical fundamentals of the 
method are briefly described to highlight its advantages and the scope of practical use in the field of 
computational mechanics. Selected results of numerical analyses are provided to illustrate demanded 
capabilities. The perspectives of nonlocal and integral based problem formulations for dynamics are 
discussed. 
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PERYDYNAMIKA W MODELOWANIU USZKODZEŃ I SYMULACJI ICH PROPAGACJI  

W UJĘCIU NUMERYCZNYM 
 

Streszczenie 
Artykuł stanowi przegląd wybranych zastosowań perydynamiki w modelowaniu uszkodzeń i symulacji 

zjawisk ich propagacji w konstrukcjach mechanicznych. Przedstawiono podstawy teoretyczne metody ze 
szczególnym uwzględnieniem specyfiki zalet perydynamiki w zastosowaniach w mechanice komputerowej. 
Opisywane zalety metody są zilustrowane wybranymi przykładami analiz numerycznych. Artykuł 
przedstawia możliwości obliczeniowe nielokalnych sformułowań dla dynamiki bazujących na całkowych 
równaniach ruchu. 

 
Słowa kluczowe: perydynamika, uszkodzenie, modelowanie nielokalne, mechanika komputerowa 

 
1. INTRODUCTION 

 
The classical, i.e. locally formulated spatial 

gradient based methods are widely used to solve 
dynamics problems within the scope of 
computational mechanics. However, the above-
mentioned approaches fail when it comes to the 
conclusion that the physical matter, while 
downscaling, is not continues any more. Hence, 
spatial partial derivatives, which are required to be 
determined with regard to either stresses or strains, 
result in numerical inaccuracies. Similarly, 
macroscale engineering parameters, e.g. the elastic 
properties (Young’s, Kirchhoff moduli, Poisson’s 
ratio, etc.), do not lead to a realistic and, therefore, 
entirely reliable description of the material 
characteristics at micro- and nanoscale. Spatial 
partial derivatives do not simply stand for adequate 
means to solve problems in computational 
mechanics at these lengthscales properly. Nonlocal 
formulations have opened new promising 
perspectives to overcome the above inconveniences. 

The idea of nonlocality for mechanics is not a 
new one. Elastic models with long-range interactions 
were introduced in the works by Eringen, Edelen, 
Kröner and Kunin already published in the 60thies 
and 70thies of the last century [1-3]. Similarly, 
complementary nonlocal damping models are 

proposed [4]. The early nonlocal models were 
proposed in reference to the results of experiments 
where dispersion curves were identified for phonons 
propagating in monocrystalline structures and ion-
ion interactions. Nonlocal character of both the 
identified interactions and resultant elastic properties 
at nano- and microscale was experimentally proven, 
which inspired new approach of modelling. 
Similarly, van der Waals forces may be conveniently 
modelled using nonlocal formulation. 

The unique property of the nonlocal modelling is 
the capability of keeping specific lengthscale, e.g. 
the distance between carbon atoms in graphene [5], 
and related physics through all modelled scales. This 
feature allows for hierarchical introduction of 
different physical properties and behaviour of the 
modelled material and structure, following the idea 
of multiscale modelling [6]. Hence, different factors 
in the constitutive equations, that are unveiled at 
consecutive geometric scales, can be conveniently 
considered and both continuous and granular 
character of matter can be reflected accurately. 

Nonlocal models of damages (structural 
discontinuities, cracks) are also successfully 
introduced [7]. Integral based equations of motion 
are applied to model the behaviour of the damage, 
especially in the area of its tips, where differential 
description could fail [8]. Moreover, nonlocal 
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approach may help to regularize the boundary value 
problems as reported in [7]. A desired property of 
the nonlocal models of damages is assuring more 
physical inference on the crack’s propagation path, 
which is independent from the preferred directions 
of a mesh of nodes in numerical models. More 
spontaneous damage evolution can be observed [9]. 

Finally, nonlocality allows for convenient 
reduction of numerical dispersion [10,11]. 
Introduction of long-range interactions within 
chosen horizon suppresses the effect of both spatial 
and temporal discretization in numerical models, 
which inevitably leads to errors due to invalid 
dispersion properties of modelled media. 

The objective of the paper is to focus on the 
properties and applications of a specific nonlocal 
modelling technique, namely peridynamics [12]. The 
following Sections 2 and 3 cover the fundamentals 
of peridynamics and its modelling capabilities for 
various types of analyses. Details of numerical 
modelling are introduced in Section 4, followed by 
the results of selected case studies for damage 
modelling and simulations of its propagation, 
presented in Sections 5 and 6. The last Section 7 
summarizes the work and draws conclusions. 

 
2. FUNDAMENTALS OF PERIDYNAMICS 

 
A peridynamic model for a solid body considers 

nonlocal interactions between their pieces (referred 
to as particles) localized within given horizon H  
with respect to an actual central particle, which is 
localized at the position x . 

 

 
Fig. 1 Bond based peridynamics. 

 
Spatial integral based governing equation takes 

the form [13,14] 
 

 ( ) ( ) ( )∫ +=

H

tdV,t ,, ˆ xbξηfxu x&&ρ  (1) 

where 
 
 ( ) ( )tt ,,ˆ xuxuη −=  (2) 
 xxξ −= ˆ  (3) 
denote the relative displacement and position, 
respectively, based on the coordinates of both the 

central ( x ) and neighbouring particles ( x̂ ) – 
defined in the reference coordinate system. 

The material properties are defined by the mass 
density ρ  and the pairwise function f , which, in 
turn, contains elastic constants. Volumetric density 
of an external force acting on the body is derermined 
with the vector b . Volumetric density of the 
resultant interaction force - including both local and 
nonlocal components - is found as the sum of 
product of the function f  and volume portion x̂dV  
attached to the neighbouring particles. 

Making a general reference of the reactions in 
the bond based peridynamic models to the axially 
deformed rods (or idealized springs governed solely 
by the stiffness coefficients), the function f  is 
determined based on strain s  and the micromodulus 
function c  
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e  is the unit vector showing the reaction’s 

direction. The function f  takes non-zero values only 
if a neighbouring particls stays within the central 
particle’s horizon of the radius δ . To provide 
examples of the definition for the micromodulus 
function c , in case of an isotropic and homogeneous 
material, it can be found for one- and two-
dimensional models with the formulas 
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Apart from the elastic properties - the Young’s 

modulus E  and the Poisson’s ratio  ν  - geometry is 
defined either with the area of transverse cross-
section A  or the thickness T . In the following 
sections general characteristics of peridynamics is 
discussed, illustrated with the results of carried out 
numerical simulations. 

 
3. CAPABILITIES OF PERIDYNAMICS  

 
Due to nonlocal character of the governing 

equation for peridynamics (1), specific types of 
analyses are handled in a more convenient way in 
comparison to the classical local spatial partial 
derivative based approaches. Based on the 
theoretical assumptions presented in Section 2, it 
should be noted that - even for discretized solutions 
(case of numerical peridynamic models) – the path 
for the damage’s growth reflects real evolutions of a 
crack. The modelled long-range interactions are 
similar to those observed at micro- and nanoscales. 
The key issue is that the growth of a modelled crack 
is physically determined, i.e. by breaking links 
between particles within considered horizon, and is 
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not controlled by the properties of a structured mesh 
itself. Moreover no spatial partial derivatives are 
necessary to determine kinematic properties of the 
model. Hence, geometric discontinuities, e.g. fatigue 
cracks, can be fairly easily introduced to allow for 
reliable simulations in the field of NDT and SHM.  

The work [8] briefly reports some of possible 
applications of peridynamics. This method was 
successfully used to assess the damage’s size based 
on the reflection coefficient for the Lamb waves and 
rate of higher order harmonics generation. Moreover 
a crack can be identified based on the phenomenon 
of wave generation at its edges due to force 
excitation, that cyclically stretches and compresses 
the damaged structure. This behaviour is known as 
the clapping phenomenon. In this case, the 
mechanism of bilinear stiffness is complemented 
with generation of high frequency waves since the 
crack’s faces hit while opening and closing. 

In peridynamics various models of potential 
based  relationships can be used to establish the 
function f in (1) [13]. This leads to different models 
of materials that can be adapted and may effectively 
reflect the physical properties. This property is 
allowed since the relationships between the stressess 
and strains can vary within given horizon H . It is 
feasible since there are known various formulations 
for the micromodulus function, not necessarily 
defined as constants – as shown in equations (5) and 
(6) [13]. This characteristics also references, the 
above-mentioned real behaviour observed at micro- 
at nanoscale, where long-range relationships govern 
the mechanisms of nucleation and growth of 
material disintegration, e.g. potential based ion-ion 
reaction forces and van der Waals forces. The 
above-mentioned nature of peridynamics, therefore, 
has opened new perspectives regarding modeling of 
a real crack’s growth. What is even more promising, 
the fact that the peridynamic formulation 
incorporates macro scale material properties, e.g 
Young’s, Kirchhoff moduli and Poisson’s ratios, 
allows for very convenient modelling. Hence, 
peridynamics allows to effectively handle a real 
behaviour of material – e.g. crack’s growth, which is 
an issue, especially at its tips – operating with 
approximate and engineering parameters. 

The property of nonlocality in peridynamics also 
unveils interesting capabilities regarding multiscale 
simulations and related issues. As shown in [6], the 
material properties can be effectively preserved 
through subsequent geometric scales when applying 
peridynamics. This characteristics should be 
considered as the result of introduction the horizon 
in equation (1). The horizon determines a specific 
lengthscale of given order of spatial dimensions. 
This property also reflects the fact that the matter 
dramatically changes its properties at a very specific 
dimension scale, i.e. it may be effectively considered 
as continuous at macro- and mesoscale, whereas its 
granular nature should be taken into account when 
further downscaling. The mentioned feature is 
important as specific micro- or nanoscale 

phenomena may have dramatic influence on crack 
propagation, which is demanded to be kept at meso- 
or macroscale simulations. Similarly, due to the 
accessible lengthscale effects, different constitutive 
models, incorporating local phenomena via 
homogenization technique, can be effectively 
introduced as for orthotropic models of laminated 
composites shown in [9], where the paths for the 
damage’s growth under different conditions were 
also studied. Finally, one may attempt to substitute 
the existing mesh of nodes with the one created for a 
peridynamic model, where the material or overall 
structural  properties can be preserved via available 
nonlocal formulations and lengthscale. An adequate 
resultant numerical peridynamic model with a 
square mesh of nodes for a graphene sheet (of 
hexagonal mesh) can be found in [5]. 

A disadvantage of peridynamics, however, is an 
increase of computational costs, which results from 
more densely populated global system matrices and 
more demanding data processing that needs more 
interactions to be included into the discretized 
governing equations. Moreover, the arbitrariness 
related to the form of  the function f  leads to some 
ambiguity in the modeling of material properties. 
Theorethically, there is an infinite number of 
equivalent material models that can be applied, 
including various horizon radius for long-range 
interactions. On the other hand, however, this 
capability enables nonclassical models of elasticity 
or damping to be considered. 

In the following the results obtained for the 
studies on damage propagation, using examples of 
numerical peridynamic cracked models, are shown. 

 
4. NUMERICAL MODELING 

 
The present section serves as the description of 

numerical procedure for peridynamic modelling and 
simulations. The following steps are performed by 
the author to simulate damage propagation: 

• Model parameterization – setting geometric and 
material properties, including the ultimate stress, 
which is responsible for the level, at which the 
mechanisms of bonds cracking between particles 
is activated; setting the localization, length and 
orientation of cracks; 

• Setting boundary conditions – external forces, 
that lead to model deformation; 

• Setting initial conditions regarding nodal 
displacements and velocities; 

• Setting the simulation parameters –the distances 
between particles, radius of horizon, integration 
time and total simulation time, maximum 
displacement error for iteration loop; 

• Initial calculations to determine: 
o micromodulus function; 
o critical strain; 
o critical elongation for the bonds between 

particles; 
o volumes of particles within the horizon; 
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o introduction of the crack via disbonding of 
selected links between particles; 

o initial values for the nodal quantities; 
• Carrying out an iterative procedure to determine 

the nodal displacements and velocities for 
consecutive time steps - within the loop of: 
o calculation nodal parameters based on the 

explicit time integration algorithm; 
o check if already removed links between 

particles should be temporarily considered 
when disconnected particles touch; 

o check if additional links between particles 
must be removed since the relevant stains 
are exceeded; 

• Postprocessing and data presentation. 
When considering the boundary conditions for 

peridynamics, it must be noted that a special 
attention should be put on proper attachment of  an 
external force. The peridynamic models tend to 
break in the regions of force application due to a 
specific distribution of long-range links between 
particles Fig. 2. references the issue. 

 

(a)  (b)  

(c)  
Fig. 2 Breaking the model due to improper 

force application: (a) localizations of 
stretching forces and initial notches (b) 

initial model deformation before the 
particles’ links break (c) the model 

exhibits improper breaks as both the 
forces’ amplitude rises too fast and the 
area of their attachment is too small. 

 
There are two ways to solve the above-stated 

problem. One should either increase the stiffness of 
the links between the particles in the region where 
the forces are applied (more convenient but less 
physical approach) or enlarge the application region, 
which stands for a more physical solution as it 
spreads spatially the influence of external force 
acting on a modelled body. In the present work the 
latter approach is considered. 

Another specific property of peridynamics -  
regarding boundary conditions – is its ability to 
operate without fixed displacements even for statics, 
quasi statics (under equilibrium of external forces) 
and transient studies, which refers to the cases 
studied in the present work. Eventually, if a 
peridynamic model does not consider any fixed 
displacements, and there is no equilibrium for the 
external loads, it undergoes both elastic deformation 
and change of its linear and angular position in the 
referential coordinate system. In the following 
examples of transient simulations a free-free 
boundary condition is considered. 

 
5. AXIAL STRETCHING 

 
First, numerical example for axial stretching of a 

cracked plate is discussed. A peridynamic model of 
a plate made of aluminium is shown in Fig. 3. 

 

 
Fig. 3 A peridynamic model of a cracked plate. 

 
The overall dimensions of the model equal 14 x 

35.875 x 1 mm. The material properties are as 
follows: Young’s modulus - 70GPa, Poisson’s ratio - 
0.3, mass density 2100kg/m3, and ultimate stress - 
40MPa. The distance between particles is 0.125mm 
and the radius of horizon equals 0.5mm. The 
integration time is 2ns. A single 3.9375mm-long 
horizontal notch is introduced to initiate the 
processes of breaking the plate. The force is spatially 
distributed within two areas to allow for stretching 
the modelled sample. A virtual sensor is located in 
the area of the damage growth path in order to 
register the nodal oscillations that appear due to 
braking the plate. Fig. 4 and 5 present the plate 
deformation for various stages of damage progress. 
The average speed of crack propagation equals 
834m/s. 
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Fig. 4 First stage of the model deformation 
(scaled view) - before breaking the links 

between particles. 
 

(a)   

(b)  
Fig. 5 Shear waves at the crack’s edges: 

before (a) and after the modelled specimen 
was eventually broken into pieces (b). 

 
Fig. 6 presents the frequency characteristics for 

the nodal displacements measured at the virtual 
sensor localization. The clearly recognized 3MHz 
displacement component refers to the wave 
propagating through the plate, which originates from 
moving tip of developing crack - subsequently 
braking links causes propagating model 
disturbances. 

 

 
Fig. 6 Frequency characteristics for the 

nodal displacement in vicinity of growing 
crack. The slow motion trend is  removed. 

The identified 3MHz-wave component appears if 
the crack continues growing. Hence, it may be 
considered as an indicator showing damage 
progress. However, an inconvenience emerges 
regarding capability of effective measurements of 
the waves exhibiting amplitudes of the order of 
10nm. Additionally, the generated waves may 
interfere with other cyclic displacements, including 
those ones resulting from external loads, which may 
eventually lead to data loss. In this case damage 
detection may be questionable. Nevertheless, 
peridynamics enables observation of the waves 
generated at the crack’s tip while its growth. 
 
6. FATIGUE 

 
The second case study considers fatigue analysis. 

The model of a square aluminium plate of the 
dimensions 4 x 4.125 x 1 mm with a centrally 
localized 0.625mm-long crack undergoes cyclic 
stretching and compression. The amplitude and 
frequency of the external force are 33.75N and 
200kHz, respectively. However, it should be 
mentioned that the amplitude of acting force is 
intentionally set at high level to assure fast crack’s 
growth and register its rapid evolution even during 
subsequent stretching and compression cycles. The 
remaining parameters of the model are the same as 
those considered in the previous analysis. Fig. 7 
presents selected stages of the crack progress 
appeared during the fatigue test. 

 

(a)      (b)  

(c)      (d)  

 (e)      (f)  

Fig. 7 Progress of damage in the plate for 
fatigue characterized by the crack’s length 
(scaled view): (a) 0.625mm at 6.84us, (b) 
0.75mm at 16.82us, (c) 1mm  at 26.86us, 

(d) 1.5mm at 36.16us, (e) 2mm at 36.44us, 
(f) 3.125mm at 37.06us. 
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As referenced in Fig. 7, a gradual increase of the 
crack’s length is observed. Subsequent cycles of the 
sinusoidal load causes continued model degradation. 
A spontaneous damage progress may be tracked for 
given value of ultimate stress. Additionally, 
regardless of the structure of particles mesh, 
different  paths for growing cracks can be 
successfully simulated for various stretching and 
compression speeds, which is referenced in the other 
author’s work [15]. 

 
7. CONCLUDING REMARKS 

 
The paper discusses selected aspects of 

computational mechanics regarding applications of 
peridynamics for damage modelling and simulations 
of it propagation. As referenced in the work, 
peridynamics is a convenient analytical and 
numerical modelling tool for solving dynamics 
problems for cracked structures. 

Considering an integral based formulation for 
governing equations, one can fairly easily handle 
crack propagation in numerical models. Spatial 
partial differential equations are excluded from 
problem description which, in turn, prevents from 
potential additional sources of computational errors. 

Peridynamic models stand for a relatively 
reliable tool in the field of NDT and SHM. More 
physically induced mathematical description is 
provided for problem solution since a real path for 
propagating damage can by observed, i.e. not 
governed by the structure of particles mesh. 

A slight inconvenience should be however 
mentioned when using peridynamics. As in the case 
of other nonlocal approaches an increased 
computational effort is required to handle all long-
range interactions. However, this problem may be 
partially overcame via parallelization and 
computations on GPU. Due to specific - an integral 
based - formulation for peridynamics, the governing 
equation requires the sum of all reactions present 
within given horizon to determine new 
displacements for each degree of freedom. Hence, 
the kinematic properties for a peridynamic model 
can be calculated separately for each particle, 
running many threads simultaneously. 
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