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Abstract 
The present paper introduces a discrete physical model to approach the problem of nonlinear vibrations of 

cracked beams resting on elastic foundations. It consists of a beam made of several small bars, evenly spaced, 
connected by spiral springs, presenting the beam bending stiffness. The crack is modeled by a spiral spring 
with a reduced stiffness and the Winkler soil stiffness is modeled using linear vertical springs. Concentrated 
masses, presenting the inertia of the beam, are located at the bar ends. The nonlinear effect, due to the axial 
forces in the bars resulting from the change in their length, is presented by longitudinal springs. This model 
has the advantage of simplifying parametric studies, because of its discrete nature, allowing any modification 
in the mass and the stiffness matrices, and in the nonlinearity tensor, to be made separately. After establishing 
the model, various practical applications are performed without the need of going through all the formulation 
again. Numerical linear and nonlinear results are given, corresponding to a cracked simply supported beam. 
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1. INTRODUCTION 
 

Large vibration amplitudes of cracked beams 
resting on elastic foundations, wear a great practical 
and theoretical interest in civil, mechanical, and 
transportation engineering. In recent publications, 
this topic has been analyzed by combining the 
vibration theories used with various types of 
foundations modelling. 

The study of the cracks behaviour involves, in 
addition to theoretical approaches, experimental 
investigations carried out in order to establish 
idealized crack models. The first attempts [1] to 
quantify local defects were those of Kirmsher [2] 
and Thomson [3] who simulated the effect of a 
notch on the structure flexibility by a local bending 
moment or a reduced section, with magnitudes that 
were experimentally estimated. Also, in the 1950s, 
Irwin [4, 5], Bueckner [6], Westmann and Yang [7] 
quantified the local flexibility of a cracked region 
of a structural element by relating the local 
flexibility to the crack stress intensity factor (SIF).  
Using this principle, a method was developed for 
the computation of the SIF based on the local 
bending stiffness (the inverse of the local 
flexibility) of a cracked rectangular beam, 
determined experimentally. Since 1957, several 
investigators computed the SIF and the local 
flexibility for a variety of geometries of the crack 
and the associated structural member. Liebowitz et 
al. [8-10] used existing results from fracture 
mechanics to calculate the local rotational 
flexibility of a beam of a rectangular cross-section. 
More recently [11], cracks have been modelled as a 

massless hinge with a torsional spring at the crack 
position. The models permitted to establish theories 
in the field of crack detection, based on the inverse 
problem. These theories were essentially based on 
the variation in frequencies and mode shapes 
induced by the presence of the crack. For the study 
of a beam with multiple cracks, one may use a 
model made of several beams connected with 
massless spiral springs, which may be considered a 
partially natural discrete model. 

Ming-Hung Hsu [12] addressed the vibration 
analysis of an edge-cracked beam resting on elastic 
foundations with axial loading using the differential 
quadrature method. Shin Y et al. [13] investigated 
the effect of the crack parameters (size, location, 
size and number) and the foundation stiffness on 
the natural frequencies of an Euler-Bernouli beam 
for both the simply supported and the clamped 
beam cases. M. Attar et al. [14] studied free 
vibrations of a shear deformable beam with 
multiple open edge cracks using a lattice spring 
model (LSM) where the beam was discretized into 
a one-dimensional assembly of segments 
interacting via rotational and shear springs. The 
beam was also supported by the so-called two-
parameter elastic foundation. Akbas [15] studied 
the free vibrations of an edge cracked functionally 
graded cantilever beam resting on Winkler 
Pasternak foundations, where the differential 
equations of motion were obtained using 
Hamilton’s principle. The problem was investigated 
within the Euler-Bernoulli beam theory by using a 
finite element method. The cracked beam was 
modelled as an assembly of two sub-beams 
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connected through a massless elastic rotational 
spring. A.C. Neves et al. [16], similarly to the work 
carried out in this paper, used a discrete model 
based on the Discrete Element Method (DEM) to 
study the effect of the crack on the dynamic 
behaviour of a cantilever beam and of a beam free 
of support conditions. V. Stojanović, M. D. 
Petković [17] studied the geometrically nonlinear 
free and forced vibrations of damaged high order 
shear deformable beams resting on a nonlinear 
Pasternak foundation, where they investigated the 
effects of the specific stiffness of the foundation on 
the damaged beam frequencies and displacements 
with the aim of equalising the response of a 
damaged and an intact beam. 

The purpose of this paper is the development of 
an adaptable general discrete model for linear and 
nonlinear vibrations of cracked beams resting on 
elastic foundations, using a discrete model. The 
process of discretization carried out is intended to 
allow an efficient procedure for taking into account 
systematically the variation in the beam, the crack 
and the soil characteristics, in order to perform 
multiple parametric studies. 

In Section 2, of the present paper, the theoretical 
formulation is presented and the discrete model is 
detailed, with a non-dimensional formulation.  
Section 3 is devoted to detail and discuss the results 
obtained for the vibration of a cracked simply 
supported beam resting on elastic foundations, by 
varying the soil and the crack parameters in both 
the linear and the nonlinear case. 

 
2. GENERAL THEORY 
 

The general theory is established in the 
following section for a beam, made of extensional 
bars, concentrated masses, spiral and linear springs, 
resting on elastic foundations, presented by a 
distribution of vertical springs, Fig. 1. 

 
Fig. 1. The general discrete model for a 

cracked beam resting on elastic foundations 
 

2.1. General formulation 
Based on the model introduced by Khnaijar and 

Benamar [18] for nonlinear vibrations of uncracked 
beams resting on elastic foundations, a new cracked 
beam model is developed here. It consists of the N-
degree-of-freedom discrete system shown in Fig. 1, 
with N masses 1, , Nm m… , located at the ends of 
(N+1) rigid bars, connected by (N+2-1) spiral 
springs simulating the beam bending stiffness [19]. 
The crack is modeled by a spiral spring simulating 

the crack, with a reduced stiffness, as shown in Fig. 
2. The stiffness of the current rth spring is denoted  
 

 
Fig. 2. Crack modelling  

 
by rC , for 1 to ( 2 1)r N= + − ), and  the stiffness of 
the spiral spring, presenting the crack, is denoted 
by cC  . The bending moment M  in the rth spiral 
spring connecting the bars (r-1) and r is given by: 

rC θ= − ΔM ; -1r rθ θ θΔ = −  being the angle 
between the two bars. On the other hand, each bar 
is considered as a longitudinal spring of length rl  

and stiffness b
rk , 1 to r N= . The Winkler 

foundations are modelled using a longitudinal 
vertical spring distribution, with l

rk presenting the 

stiffness coefficient of the thr linear spring, 
for 1 to r N= . Using vector notation 
{ } { } { } { }1 2; ; ...; ;...;i Nd d d d is the displacement 
basis, denoted as DB, defined by 

{ } [ ]0 0 ..1...0T
i =d and presenting the unit 

displacement of the ith mass. The transverse 
displacements of the masses m1 to mN from the 
horizontal equilibrium positions are denoted as y1 to 
yN. The non-deformed positions of the springs 
correspond to y=0. The masses displacement vector 
can be written in the Displacement Basis (DB) as: 
 { } { } { } { }1 1 ... ...i i N Ny y y= + + +y d d d  (1) 
by considering the modal basis (MB) 
{ } { } { } { }{ }1 2, ,..., ,...,i NΦ Φ Φ Φ , in which 

{ }T
i ijϕ⎡ ⎤= ⎣ ⎦Φ  is the thi linear mode shape of the 

system obtained by solution of the linear eigenvalue 
problem and denoted as MB, the displacement 
vector can be expressed as: 
 { } { } { } { }1 1 ... ...i i N Ny y y= + + + +y Φ Φ Φ  (2) 

The total strain energy of the beam can be 
written as the sum of the strain energy due to the 
bending denoted as s

lV , and the strain energy 

induced by the Winkler springs l
lV plus the axial 

strain energy nlV  due to the axial load induced by  
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the large deflections of the beam. Thus, s
lV , l

lV , nlV  
and the kinetic energy T, are as follows: 

 
2L

0

² dx
2 x²

s
l

EI WV ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
∫  (3) 

 ( )
L 2

0
dx

2
l

l
kV W= ∫  (4) 

 
22L

0
dx

8 xnl
ES WV

L

⎛ ⎞∂⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
∫  (5) 

 
2L

0
dx

2 t
S WT ρ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
∫  (6) 

where W is the beam transverse displacement. 
Using a generalized parameterization and the usual 
summation convention for repeated indices, the 
transverse displacement can be written as 

 ( , ) ( ) ( ) for , 1,...,i iW x t y t w x i j N= =  (7) 
in which wi are the basic functions. By replacing 
the expression (7) for W into the energy 
expressions s

lV , l
lV , nlV and T , one gets: 

 
2
ij

i j
m

T y y= & &  (8) 

 
2

s
ijs

l i j
k

V y y=  (9) 

 
2

l
ijl

l i j
k

V y y=  (10) 

 
2
ijkl

nl i j k l
b

V y y y y=  (11) 

in which ijm , s
ijk , l

ijk and ijklb  are defined as 
follows in the MB: 

 
L

0
dx for , 1,...,ij i jm S w w i j Nρ= =∫  (12) 

 
0

²²
dx for , 1,...,

² ²

L js i
ij

ww
k EI i j N

x x
∂∂

= =
∂ ∂∫  (13) 

 
0

dx for , 1,...,
L

l
ij i jk k w w i j N= =∫  (14) 

 0 0
dx dx 

4
for , , , 1,...,

L Lji k l
ijkl

ww w wESb
L x x x x

i j k l N

∂∂ ∂ ∂
=

∂ ∂ ∂ ∂
=

∫ ∫  (15) 

For a conservative system, the dynamic 
behaviour of the structure may be obtained by 
Lagrange's equations: 

 0 for 1,..., ;  
r r r

T T V r N
t y y y
⎛ ⎞∂ ∂ ∂ ∂

− + − = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠&
 (16) 

where s l
l l nlV V V V= + + . Introducing the energy 

expressions i.e. equations (3) to (6) into (16) gives: 

 
2 0 

for 1,...,

s l
ir i ir i ir i i j k ijkrm y k y k y y y y b

r N

+ + + =

=

&&
 (17) 

Table 1. Comparison of the nondimensional fundamental frequencies of a simply supported cracked beam resting on elastic 
foundation for various crack positions and depths. 
  λ (soil parameter)=10 

Present model (Pr.) 

Crack 
position 

(c/L) 
Crack depth  

ξ=a/h 
Shin et al. 

[13]1 N≈10 N≈20 N≈30

Error(%)= 
[ ] ( )

[ ]
13 Pr. 10

13
N− =

Error(%)= 
[ ] ( )

[ ]
13 Pr. 30

13
N− =

 Frequency 
drop(%)2

uncracked   10,3103 10,3504 10,3563
   

0,02 10,3625 10,2424 10,3491 10,3550 1,16 0,07 0,01
0,2 10,2531 10,1344 10,2398 10,2456 1,16 0,07 1,07
0,4 9,8872 9,7711 9,8742 9,8799 1,17 0,07 4,60

1/8 

0,5 9,529 9,4132 9,5160 9,5217 1,22 0,08 8,06
   

0,02 10,3594 10,3058 10,3400 10,3518 0,52 0,07 0,04
0,2 10,0003 9,9488 9,9817 9,9931 0,51 0,07 3,51
0,4 8,9826 8,9353 8,9655 8,9759 0,53 0,07 13,33

1/4 

0,5 8,1963 8,1518 8,1803 8,1900 0,54 0,08 20,92
   

0,02 10,3549 10,3014 10,3389 10,3473 0,52 0,07 0,09
0,2 9,6829 9,6334 9,6681 9,6759 0,51 0,07 6,57
0,4 8,1405 8,0996 8,1283 8,1347 0,50 0,07 21,45

1/2 

0,5 7,1876 7,1523 7,1771 7,1826 0,49 0,07 30,64
1Nondimension frequency 
2Frequency drop compared to the uncracked beam ( ) ( )

( )
30 30

30
Uncracked N Cracked N

Uncracked N
= − =

=
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This nonlinear differential system (17) may be 
expressed in a matrix form as 

 [ ]{ } ( ) { }3 0
2

s l⎛ ⎞⎡ ⎤ ⎡ ⎤+ + + =⎡ ⎤⎜ ⎟⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
M y K K B y y&& (18) 

where [M], [Ks], and [B (y)] are the mass, the 
bending rigidity and the nonlinear rigidity matrices. 
The beam nonlinear free response is assumed to be 
given by: 

 
cos( ) cos( )

 for , 1,...,

discr nl nl
i i discr j ij discry A t a t

i j N

ω ϕ ω= =

=
(19) 

where discr
iA  is the modulus of the displacement, 

nl
discrω  is the corresponding nonlinear frequency 

and ja  is the modulus of the displacement iy  
expressed in MB. The kinetic, linear and nonlinear 
strain energy expressions are obtained by replacing 
the expressions for iy  of equation (19) into (8) to 
(11), which leads to:  

 2 21 ( ) sin ( )
2

nl nl
i j discr i j discrT a a m tω ω=  (20) 

 21 cos ( )
2

s s nl
b i j ij discrV a a k tω=  (21) 

 21 cos ( )
2

l l nl
b i j ij discrV a a k tω=  (22) 

 41 cos ( ) 
2

nl
nl i j k l ijkl discrV a a a a b tω=  (23) 

where ijm , s
ijk , l

ijk and ijklb  are the MB tensor 
general terms given by [18,20]: 
 ij si tj stm mϕ ϕ=  (24) 

 s s
ij si tj stk kϕ ϕ=  (25) 

 s s
ij si tj stk kϕ ϕ=  (26) 

 ijkl si tj pk ql stpqb bϕ ϕ ϕ ϕ=  (27) 

Replacing the expressions for T , lV  and nlV , 
equations (20) to (23), in equation (16) and 
applying the harmonic balance method leads to 
[21,22]: 

 ( ) { }2 3 0
2

s l nl
discrω⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + =⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

K K M B A A (28) 

 
2.2. General expressions for the discrete model 

parameters 
 
2.2.1. General expression for the dynamic 

tensors ijm , l
ijk , ijklb  and nlω  

The calculation of the general terms ijm , l
ijk  , 

ijklb and nlω for the discrete model are detailed in 

[18,20]. The final expressions for ijm and l
ijk are: 

 
( )

δ  for , 1,..,
1ij ij

SLm i j N
N
ρ

= =
+

 (29) 

 
( ) ( )3

3

1 1

 for , 1,..,

l
ij i ij i ij

N EI N
k k

L L
i j N

δ α δ
+ +

= =

=

 (30) 

iα and iλ  being the nondimensional parameter: 

 
( ) ( )

4 4

4 4  with 
1 1

i i i
i i

k L k L
EIEI N N

λ
α λ= = =

+ +
 (31) 

In the case of constant soil 
distribution iα α= and iλ λ= . The fourth order 
tensor ijklb is given by: 

 ( )33 32 2 1  for 1,...,
8 8iiii
ES ESb N i N
l L

≅ = + =  (32) 

 
( )( )( ) ( ) ( )( ) ( )( ) ( )

( )( )( ) ( )

1 1 1 1 1 1 1 1 1

3
1 1 1 31  for 2,...,

8

i i i i i i i i i i i i

i i i i

b b b

ESb N i N
L

− − − − − − − − −

− − −

= =

= ≅ − + =
(33) 

 

( )( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

3
1 1 1 1 31  

8
for 2,...,

ii i i i ii i i i ii i i i i

i i i i i i i i

b b b b

ESb b N
L

i N

− − − − − − − −

− − − −

= = =

= = ≅ +

=

(34) 

 

( ) ( ) ( )

( ) ( )

1 1 1

3
1 31  

8
for 2,...,

iii i i iii i i ii

ii i i

b b b

ESb N
L

i N

− − −

−

= = =

≅ − +

=

 (35) 

and the other terms of ijklb  are obtained by 
symmetry relations, or are equal to zero. On the 
other hand, the spiral springs tensor is given by: 

 ( )
( )2

2 2

1
 for 3,...,rs

r r
N C

k r N
L−
+

= =  (36) 

 ( )
( ) ( )

2

11 2

2 1
 for 2,...,s

r rr r
N

k C C r N
L +−
+

= − + = (37) 

 
( ) ( )

2

1 22

1
4  for 1,..,s

rr r r r
N

k C C C r N
L + +
+

= + + = (38)  

where: 

 ( )1  with2 1i
EI EIC N i N
l L

= = + ≤ ≤ +  (39) 

and the other values of s
ijk  are obtained by 

symmetry relations, or are equal to zero. The 
boundaries conditions of the system determine the 
stiffness for 1 and 1s

iik i N= + . For the simply 
supported beam examined here, the two end 
torsional springs 1 2 and NC C +  have a stiffness 
equal to zero, since the rotation is free. Therefore 

( )3 35 1 /  for 1 and 1s
iik N EI L i N= + = + . The 

expression for the nonlinear frequency [23] is: 
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Table 2: Comparison of the fundamental nondimensional nonlinear frequency parameters, in a simply supported cracked beam, for 
various values of crack depth and the nondimensional Winkler soil stiffness. 

SIMPLY SUPPORTED BEAM (crack position x=0,5L, 1st mode) 

λ 0 10 100  
A* ξ =0 ξ =0,1  ξ =0,3 ξ =0,5 ξ =0 ξ =0,1  ξ =0,3 ξ =0,5 ξ =0 ξ =0,1  ξ =0,3 ξ =0,5 
0,2 1,0056 1,0056 1,0061 1,0087 1,0051 1,0051 1,0054 1,0070 1,0028 1,0027 1,0025 1,0026 
0,4 1,0223 1,0224 1,0243 1,0345 1,0202 1,0202 1,0213 1,0279 1,0110 1,0108 1,0101 1,0102 
0,6 1,0494 1,0496 1,0539 1,0760 1,0449 1,0449 1,0473 1,0617 1,0247 1,0242 1,0227 1,0229 
0,8 1,0863 1,0867 1,0939 1,1315 1,0785 1,0786 1,0827 1,1073 1,0434 1,0427 1,0399 1,0404 
1 1,1319 1,1325 1,1434 1,1992 1,1203 1,1203 1,1266 1,1632 1,0671 1,0660 1,0617 1,0624 
2 1,4577 1,4595 1,4932 1,6590 1,4213 1,4215 1,4412 1,5532 1,2469 1,2431 1,2284 1,2307 
3 1,8792 1,8822 1,9407 2,2232 1,8153 1,8156 1,8503 2,0441 1,4993 1,4923 1,4647 1,4690 

 
2

3( )
2

for , , , 1,..,

s l
i j ij ij i j k l ijkl

nl
ij i j

a a k k a a a a b

m a a

i j l k N

ω
+ +

=

=

 (40) 

 
2.2.2. The crack modelling 

As mentioned above, the crack is modelled by 
an equivalent flexible spiral spring whose stiffness 
(inverse of the flexibility) may be estimated using 
the summation of the flexibility of the beam 

1/i iF C=  and the crack flexibility 1/c c
i iF C= [14]. 

The total flexibility in the crack position can be 
expressed as:  
 tot c

i i iF F F= +  (41) 
leading to: 

 
c

tot i i
i c

i i

C C
C

C C
=

+
 (42) 

The crack stiffness may be then written as: 

 
( )
( ) ( )

1
* 1 * 1 *

c i
i

N EI CEIC
LF L N F N F

+
= = =

+ +
 (43) 

in which F* is expressed according to Narkis [24] 
as follows: 

 

2 3 4

5 6 7

8 9 10

* 5.346

1.8624 3.95 16.375 ..

37.226 76.81 126.9 ..

172 143.9 66.56

with  

F h

a
h

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ

= ×

⎧ ⎫− + +
⎪ ⎪⎪ ⎪− + − +⎨ ⎬
⎪ ⎪+ − +⎪ ⎪⎩ ⎭

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (44) 

ξ  refers to the dimensionless crack depth ratio. 
If the crack is located at the position i, by replacing 

c
iC (43) in equation (42), tot

iC  may be written 

as tot
i i iC Cτ= , with:  

 
( )

1
( 1 * 1)i N F

τ =
+ +

 (45) 

For an uncracked section r, 1  rτ = . The 

generalized spiral springs tensor  tots
ijk terms (for 

the cracked and uncracked sections) may be 
expressed in a unified manner as 

 ( )
( )2

 tot
2 2

1
 for 3,...,r rs

r r
N C

k r N
L

τ
−

+
= =  (46) 

 ( )
( ) ( )

2
 tot

1 11 2

2 1

for 2,...,

s
r r r rr r

N
k C C

L
r N

τ τ + +−
+

= − +

=

 (47) 

 
( ) ( )

2
 tot

1 1 2 22

1
4  

for 1,..,

s
rr r r r r r r

N
k C C C

L
r N

τ τ τ+ + + +
+

= + +

=

(48)  

For a uniform beam, by replacing iC (39) in 
equations (46) to (48), one gets: 

 ( )
( )3 tot

2 3

1
  for 3,...,s

rr r
N EI

k r N
L

τ−
+

= =  (49) 

 ( )
( ) ( )

3
 tot

11 3

2 1
 for 2,...,s

r rr r
N EI

k r N
L

τ τ +−
+

= − + = (50) 

 
( ) ( )

3
 tot

1 23

1
4  

for 1,..,

s
rr r r r

N EI
k

L
r N

τ τ τ+ +
+

= + +

=

 (51)  

 
2.3. Nondimensional formulation 

To define the nondimensional parameters, put:  

 * *
 for , 1,..,

1
ij ij

ij ij

m m SL i j N
Nm m

ρ
= = =

+
 (52) 

 
( )3l l

l* 3l*

1
 for , 1,..,ij ij

ij ij

k k EI N
i j N

k Lk

+
= = =  (53) 

 
( )3

* 3*

1
 for , 1,..,

s s
ij ij

s s
ij ij

k k EI N
i j N

k Lk

+
= = =  (54) 

 
( )3

* 3*

1
 for , , , 1,..,

8
ijkl ijkl

ijkl ijkl

b b ES N
i j k l N

b Lb

+
= = = (55) 



DIAGNOSTYKA, Vol. 18, No. 3 (2017)  
KHNAIJAR A, BENAMAR R.: A discrete model for nonlinear vibrations of a simply supported cracked … 

 

44

 4*
EI

SL
ω

ρω
=  (56) 

The nondimensional amplitude *A is expressed 
as:  

 1*  with 
a IA R
R S

= =  (57) 

where R is the radius of gyration. By putting 

11 11* *s lK k k= + , 11*m M=  and 1111*b B= , the 
single mode approach leads to the following 
expression for the nonlinear frequency parameter 
obtained in [23] from equation (36) and (56): 

 ( )
2

4 13* ² 1 1
16nl

aK BN
M K R

ω
⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (58) 

From the nondimensional formulation presented 
above, the general expressions for *

ijm , *s
ijk , *l

ijk  

and *
ijklb for the discrete model become as follows: 

 *  for , 1,..,ij ijm i j Nδ= =  (59) 

 *  for , 1,...,l
ij i ijk i j Nα δ= =  (60) 

 * 2 for 1,...,iiiib i N= =  (61) 

 
( )( )( ) ( ) ( )( ) ( )( ) ( )

( )( )( )

* * *
1 1 1 1 1 1 1 1 1

*
1 1 1 1  for 2,...,

i i i i i i i i i i i i

i i i i

b b b

b i N

− − − − − − − − −

− − −

= =

= = − =
(62) 

 

( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )

* * *
1 1 1 1 1 1

* * *
1 1 1 1 1 1 1 

for 2,...,

ii i i i ii i i i ii

i i i i i i i i i i i i

b b b

b b b

i N

− − − − − −

− − − − − −

= = =

= = =

=

 (63) 

 ( ) ( ) ( ) ( )
* * * *

1 1 1 1 1 

for 2,...,
iii i i iii i i ii ii i ib b b b

i N
− − − −= = = = −

=
 (64) 

The other values of *
ijklb  are equal to zero. The 

general terms of the nondimensional spiral springs 
tensor *s

ijk  are obtained by replacing equation (54) 
in equations (51) to (53), are given by: 
 ( )

* tot
2  for 3,...,s

rr rk r Nτ− = =  (65) 

 ( ) ( )* tot
11 2  for 2,...,s

r rr rk r Nτ τ +− = − + =  (66) 

 ( )* tot
1 24  

for 1,..,

s
rr r r rk

r N
τ τ τ+ += + +

=
 (67)  

The other values of s* tot
ijk  are obtained by 

symmetry relations, or are equal to zero. 
 

3. APPLICATION 
  

The present section is devoted to the 
presentation and discussions of the numerical 
results obtained by application of the theory 
established above to a Cracked Simply Supported 
Beam Resting on Elastic Foundation (CSSBREF) 
in both the linear and nonlinear cases. The beam 
examined has the following properties: length 

L=10m, Young’s modulus E=2.068x1011N/m², 
density =7850kg/m3, the cross section width 
b=0.25m and height h=0.25m and soil parameter λ  
=10. 

3.1. Linear case 
The CSSBREF nondimensional stiffness 

matrix *SS
N⎡ ⎤

⎣ ⎦Κ  can be expressed as: 

 
3

3
( 1) *SS SS

N N
N EI

L
+⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦K K  (68) 

with : 

 

*

5 4 1 0 . . . . 0
4 6 4 1 0 . . . .

1 4 5 . . . . .
0 1 . 2 4 2 2 1 . . .
. 0 2 2 5 4 . 0 .
. . . 1 4 6 . 1 0
. . . . . . . 4 1
. . . . 0 1 4 6 4
0 . . . . 0 1 4 5

SS
N

r r
r r

r r r

α
α

α τ τ
α τ τ

τ τ α τ
α

α
α

⎡ ⎤ =⎢ ⎥⎣ ⎦
+ −⎡ ⎤

⎢ ⎥− + −⎢ ⎥
⎢ ⎥− + +
⎢ ⎥

+ + − −⎢ ⎥
⎢ ⎥− − + + −⎢ ⎥
⎢ ⎥− +
⎢ ⎥

−⎢ ⎥
⎢ ⎥− + −⎢ ⎥
⎢ ⎥− +⎣ ⎦

K

(69) 

The mass matrix is equal to the identity matrix, 
and equation (12) corresponding to the beam linear 
vibrations reduced to: 

 { } ( ) [ ]{ }
2

* * 0SS SS
N discrω⎡ ⎤ − =⎣ ⎦K y I y  (70) 

where *SS
discrω  is the dimensionless linear frequency 

of the discrete system presenting the CSSBREF. 
The solution to equation (70) leads to N 
eigenvalues iβ , i=1 to N, associated to N vibration 

modes and related to N frequencies *SS
discrω , given 

by:  
 2* ( 1)SS

i discr iNω β= +  (71) 
In Table 1, the nondimensional fundamental 

frequencies of CSSBREF, corresponding to various 
values of the crack position and depth, are 
presented and compared to those of Shin et al. [13]. 
The results are given, for N=10; 20; 30, showing a 
normal process of convergence. Table 1 shows, as 
may be expected, that the frequencies obtained by 
the discrete model for cracked beams are in all 
cases lower compared to the frequency of the 
uncracked beam. The results agree well with those 
of [13] since the overall maximum difference does 
not exceed 1% for N>20. It may also be noticed that 
the fundamental frequencies are more affected by 
cracks located around the middle point of the beam 
while the second frequencies are more affected by 
cracks located around x=L/4, which may be 
expected since these locations correspond in each 
case to the antinodes of the corresponding modes.  

 
3.2. Nonlinear case 

To analyze the results in the nonlinear case, 
comparing the ratio of the nonlinear frequency 
parameter ( * / *ss ss

nl discr l discrω ω ) may be one of the 
best indicators of the nonlinearity type and acuity. 
The number of masses considered in the calculation 
is (N=30), because of the good approximation 
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obtained for this degree of discretization [18]. 
Table 2 gives the nonlinear frequencies for 
increasing values of the vibration amplitude and the 
soil parameter λ . The parameters of the beam 
considered are the same as those taken in the linear 
case. 

In Table 2 and Fig. 3, nonlinear vibrations of 
un-cracked beams (ξ =0.0) and cracked beams with 
increasing crack depth up to (ξ =0.5) are examined 
in the neighbourhood of the fundamental mode for 
various values of the soil rigidity λ. The results 
show that increasing the vibration amplitude 
induces in all cases an increase in the nonlinear 
frequency parameter ( * / *ss ss

nl discr l discrω ω ) 
according to the expected hardening type nonlinear 
behaviour. On the other hand, increasing the crack 
depth induces an increase in the non-linearity 
effect, which may be explained by equation (58) in 
which the a² coefficient is B/K which increases 
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Fig. 3. Comparison of the non-linear 

frequency ratio of the first non-linear mode 
shape of a CSSBREF with crack at the 

position x=L/2: (a) λ=0, (b) λ=10, (c) λ=100, 

when the crack depth increases. Also, the nonlinear 
effect in the neighbourhood of a given mode 
depends on the crack position according the 
analysis made above for the linear frequencies 
(section 3.1). 
 
4. CONCLUSION 

  
A theoretical general discrete model for the 

non-linear vibration of cracked beams resting on 
elastic foundations has been established. This 
model is an extension of the theories previously 
developed for uncracked beams [18] to beams with 
an edge crack located at different positions. First 
the model has been validated for a CSSBREF in the 
linear case via comparison with the literature [13]. 
In the nonlinear case, the applications carried out 
for a CSSBREF, enable one to assess the effects of 
the large vibration amplitudes, the crack depth and 
the soil parameter on the amplitude dependent non-
linear frequencies for the first three modes. 
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