
Article citation info:  
Puchalski A, Komorska I. Stable distributions, generalised entropy, and fractal diagnostic models of mechanical vibration signals. 

Diagnostyka. 2017;18(4):103-110 

103 

  

 

DIAGNOSTYKA, 2017, Vol. 18, No. 4 
ISSN 1641-6414 

e-ISSN 2449-5220 

 
 

STABLE DISTRIBUTIONS, GENERALISED ENTROPY, AND FRACTAL 

DIAGNOSTIC MODELS OF MECHANICAL VIBRATION SIGNALS 
 

Andrzej PUCHALSKI1, Iwona KOMORSKA2 

1University of Technology and Humanities in Radom, Radom, Poland, andrzej.puchalski@uthrad.pl  
2University of Technology and Humanities in Radom, Radom, Poland, iwona.komorska@uthrad.pl  

 
Abstract  

Vibrodiagnostic analysis of wearing and/or defects of complex rotating systems confirms the presence of 
non-linear, nonstationary and multiscale properties as well as long-term correlations of real signals. The 
recorded time series of vibrations are often of an impulse character. Probability distributions are different than 
Gaussian distributions and exhibit heavy-tails. These are important sources of multifractal dynamics, 
requiring advanced, data-based modelling methods. The reliable numerical algorithms, used for calculations 
of functions of stable distributions and multifractal properties, were applied in the approach presented in the 
hereby paper. Relations between parameters of stable distributions and singularity spectra indicate the 
possibility of applying both methods for modelling mechanical vibrations signals in diagnostics of complex 
systems. The performed investigations confirmed the possibility of modelling and assessing the observed 
states of the powertrain of vehicles with SI engines, on the bases of parameters of alpha-stable distribution 
(ASD) and parameterised entropy of mechanical vibrations signals. 
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ROZKŁADY STABILNE, ENTROPIA UOGÓLNIONA I FRAKTALNE MODELE 
DIAGNOSTYCZNE SYGNAŁÓW DRGAŃ MECHANICZNYCH 

  
Streszczenie 

Wibrodiagnostyczna analiza zużycia i / lub wad złożonych układów wirujących potwierdza obecność 
nieliniowych, niestacjonarnych i wieloskalowych właściwości oraz długookresowe korelacje 
sygnalozywisych. Rejestrowane szeregi czasowe drgań mają często charakter impulsowy. Rozkłady 
prawdopodobieństwa odbiegają od rozkładów Gaussowskich i wykazują gruboogonowość. Są to ważne 
źródła dynamiki multifraktalnej, wymagające zaawansowanych metod modelowania bazującego na danych. 
W podejściu przedstawionym w pracy wykorzystano niezawodne algorytmy numeryczne służące do 
obliczania funkcji stabilnych dystrybucji i cech multifraktalnych. Relacje między parametrami stabilnych 
rozkładów i widmami osobliwości wskazują na możliwość zastosowania obu metod do modelowania 
sygnałów drgań mechanicznych w diagnostyce układów złożonych. Wykonane badania potwierdziły 
możliwość modelowania i oceny obserwowanych stanów układu napędowego pojazdu z silnikiem o zapłonie 
iskrowym, na podstawie parametrów rozkładów alfastabilnych (ASD) gęstości prawdopodobieństwa i 
entropii parametryzowanej sygnałów drgań mechanicznych. 

    
Słowa kluczowe: wibrodiagnostyka, multifraktalność, rozkłady stabilne, parametryzowana (uogólniona)  

entropia 

  
1.  INTRODUCTION 
 

The analysis of time series of mechanical 
vibrations, performed by means of computers of the 
higher and higher computational power and 
advanced numerical algorithms, constitutes the new 
quality in modelling complex systems. Multilevel 
dynamics, determinism and randomness are the 
phenomena observed at the analysis of non-linear 
mechanical vibration signals, which indicate the 
need of a simultaneous application of mechanics 
and statistics rules. The control and diagnostics of 
more and more complex systems, containing 
several non-linear subsystems - which cannot be 

separated without changing their dynamic 
properties - require more accurate non-linear 
models [3,4,14,17]. The data-driven method allows 
obtaining the time series statistic model and 
identification of deviations of the changes in 
monitored system dynamics.  

Several methods are based on the classic theory 
of random signals analysis, however a lot of 
reasons indicate the necessity of using alpha-stable 
distributions instead of normal distributions at 
describing complex systems. The stable 
distributions are asymptotically - according to the 
generalised central limit theorem (GCLT) - the only 
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distribution of the sum of independent and  
identical distributions of random variables.  

The analysis of mechanical vibration signals of 
complex systems confirms the presence of long-
term correlations and scaling properties, not only 
the non-linear and nonstationary properties. When 
describing the behaviour of real dynamic systems 
by means of the power law with a fractional 
exponent, it means with the fractal measure, the 
possibility of their modelling in the multifractal 
domain is obtained [13]. The fractal, box dimension 
D measure is defined as the measure of the curve 
being the diagram of the signal under consideration 
[8], based on the power dependence: L ~ ε

-D, where  
L is the minimal number of boxes in ε scale, 
covering the given time series. The single fractal 
measure is the averaged information, related to the 
analysed range of scales. The description of the 
multifractal dynamics, it means of several 
interlaced fractals, requires the determination of the 
singularity spectrum. It is equivalent to the 
description of local properties - of representing it 
time series - by means of the multifractality 
spectrum. The spectrum obtained as the 
segmentation result, is the histogram of local 
regularity degrees of the investigated signal. 
Scaling of the signal fluctuation function, of the 
partition function its probabilistic measure as well 
as scaling the parameterised Renyi entropy [22, 29], 
constitutes the base of the multifractal formalism. 
The additive Renyi entropy constitutes the 
generalisation of the informative Shannon entropy, 
used in the information theory for assessing 
uncertainties of dynamic systems [6, 10, 30]. The 
generalised fluctuation and partition function 
exponents as well as the Renyi entropy fractal 
measure are related to the multifractal spectrum by 
means of the Legendre transformation [11]. 

The multifractal scaling is observed in several 
time series of mechanical vibrations generated in 
dynamic systems. The heavy-tail probability 
distribution, typical for stable distributions, as well 
as the long-term correlations are two basic 
multifractality sources [12]. Examples of 
applications of alpha-stable models in health 
monitoring are given in papers [7, 31, 34, 35-38]. 
Various  multifractal methods were used in 
modelling dynamic systems by the authors of 
papers [18-21, 23, 24, 27, 39].  In the method for 
rolling bearings diagnosis based on feature fusion 
the advantages of multifractal detrended fluctuation 
analysis (MF-DFA) and ASD were applied, to 
achieve an intelligent monitoring [33]. 

The results concerning the analysis of 
mechanical vibration signals in the vehicle 
powertrain are presented in this paper. The 
diagnostic data-driven models (that combine 
multifractal features with stable distribution 
features) using the parameters of stable 
distributions and multifractal measures of 
singularity spectra, based on the parameterised 
entropy, were proposed and verified. The theories 

of alpha-stable distributions and generalised 
entropy in modelling of signals having the 
multifractal character are described and analysed in 
chapters 2 and 3, respectively. Chapter 4 contains 
the results of investigations of mechanical vibration 
signals in the vehicle powertrain. Conclusions are 
presented in chapter 5. 
 
2. ALPHA-STABLE DISTRIBUTION. 

SIMULATION STUDY 
 
The recorded time series of complex rotating 

systems exhibit the impulse-like nature and 
fluctuations [28]. Probability distributions often 
deviate from the Gaussian distribution and exhibit 
heavy tails. ASD family received interest due to its 
success in modelling data, which are too impulsive 
to accept the normal distribution. The lack of closed 
formulas for densities and distribution functions for 
all but a few stable distributions Gaussian, Cauchy 
and Levy were a major problem in using stable 
distributions in technical diagnostics. There are 
now reliable computer programs to compute stable 
densities, distribution functions and parameters 
[25]. With these programs, it is possible to apply 
stable models in a variety of practical problems. 
The alpha-stable distribution is described by its 
characteristic function: 
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Data modeling using stable distributions require 
four parameters to their full description. These 
parameters are as follows: 
• stability index α∈ (0,2]; 
• a skewness parameter β ∈ [-1,1]; 
• a scale parameter γ > 0; 
• a location parameter  δ ∈ R. 

Index α describes impulsive character of 
distribution and thickness of distribution tail. For 
α=2; 1 and 0,5 the Gaussian; Cauchy and Levy 
distributions can be modeled, respectively. For α<2  
the decay distribution follows a power-laws.  
Skewness parameter β=0 implies that the 
distribution is symmetric. Negative or positive β 
implies that the distribution is skewed to the left or 
to the right respectively. The parameters γ and  δ 
are similar to the variance and the mean of a normal 
distribution. Time series of simulated alpha-stable 
signals are shown in Fig. 1.  Fig. 2 shows effect of a 
stability index on stable distribution. 
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Fig. 1. Time series of simulated alpha-stable 
signals: α, β= 0, γ=20, δ=0 
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Fig. 2. PDF (a) and right tail PDF (b) of 

simulated alpha-stable signals 
 
3. MULTIFRACTAL METHODS IN DATA 

MODELLING 
 

The relationship between the parameters of 
stable distributions and the multifractal spectra 
indicates the possibility of using both methods in 
modelling the mechanical vibration diagnostic 
signals of complex systems [1]. The base of various 
methods of the multifractal formalism is scaling the 
measures assumed in relation to the analysed 
measures signal, by means of which the 
segmentation is performed. 

 

3.1. Algorithm of detrended fluctuations analysis 

MF-DFA 
Selfafinic time series (or exhibiting such 

property after summing), are described by the Hurst 
exponents [9] related to the fractal measure D 
(D=2-H). The numerically simple estimation of the 
Hurst exponent allows the analysis of MF-DFA 
method [2]. 
Step I. Defining of the cumulated, centred, random 
variable X(i) for the time series xi with the estimator 
of the expected value. 
Step II. Dividing the centred cumulation sum into 
separate segments of a length ε, starting this 
dividing once from the beginning and for the 
second time from the end. In such way  

ε
ε

N
N int2=  segments ε are obtained. For each 

segment v the profile represented by the polynomial  
xv(i) is obtained by the least square method, and 
detrending is performed. 
Step III. Averaging of calculated variances F2(ε,v) 
for all segments v and the determination of the 
fluctuation function Fq(ε) of the order equal q. 
Step IV. Repeating steps 2 - 3 for various time 
scales ε and the analysis of fluctuation power 
dependencies in two-logarithmic scale, to determine 
the generalised Hurst exponent H(q). 

The procedure realised in the algorithm leads to 
determining the fluctuation power dependency of 
the q order: 
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The exponent  H(q) is a decreasing function. For 
negative values of the q order, the generalised Hurst 
exponent describes scaling properties in segments 
of a low fluctuation level, while when the positive 
values of the q order are considered, segments of 
high variances are shaping the fluctuation function. 

The generalised scaling exponent  τ(q) and the 
multifractal spectrum f(h) are determined by 
equations: 

 1)()( −= qqHqτ  (4) 

 )()( qqhhf τ−=  (5) 

where the singularity exponent h∶ 

 )(q
dq

d
h τ=  (6) 

Multifractal spectrum  f(h)  is a convex function. 
Pairs: [q, τ(q)] and [h, f(h)] are joined by the 
Legendre transformation. 

 



DIAGNOSTYKA, Vol. 18, No. 4 (2017)  
PUCHALSKI A, KOMORSKA I. Stable distributions, generalised entropy, and fractal diagnostic models of … 

 

106 

3.2. Segmentation algorithm according to the 

multiscale energy distribution 
The alternative way of signals segmentation 

constitutes the description of local properties on the 
basis of the probabilistic measure [40]. 
Step I. Dividing the time series into segments in 
scale ε and the discrete probability distribution 
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where Si(ε) is the sum of vibrations amplitudes in 
the i-th segment, and ∑Si(ε) is the sum of all 
amplitudes of the recorded signal. 
Step II. Determination of the Shannon entropy: 
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Step III. Parameterisation of the entropy by means 
of parameter q dividing various periods of the 
signal, according to the probability value of their 
occurrence. 

 ∑
=

−
=

N

i

q
iq P

q
I

1

)(ln
1

1
)( εε  (9) 

Step IV. Determination of the Renyi entropy 
exponent 
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Exponent D(q) , which is not growing function 
of variable q≠1, describes the way of scaling of the 
dynamic state measure, it means the Renyi entropy: 

 )(ln~)( qD
qI

−εε  (11) 

The Shannon entropy assumes equivalence of 
data, independently of their abundance determined 
by the probability density distribution function. The 
Renyi entropy for q>>0 exhibits the most probable 
occurrences, while q<<0 it relates to occurrences 
forming tails of the probability density distributions 
[32]. 

 
3.3. Relations of the generalised sum of the 

probabilistic multifractal measure 

In accordance with the multifractal formalism, 
the generalised sum of the probabilistic multifractal 
measure, determined by equation (12) is of a power 
law character within a limit:  ε→0 

 )(
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iPqZ τεεε ∑
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The described scaling relations are listed in 
Table 1. 

Table 1. Scaling relations in the multifractal 
formalism 

 Fluctuation Parameterised 
entropy 

Generalised 
sum 

Function Fq(ε)~ε
H(q) Iq(ε)~ln ε-D(q) Z(q,ε)~ετ(q) 

Exponent H(q) D(q) τ(q) 
 
The relation between the Renyi multifractal 

measure D(q) and the generalised multiscaled 
exponent τ(q) : 

 

 )1)(()( −= qqDqτ ,  (13) 

results from the scaling relations in the multifractal 
formalism. Thus the Renyi entropy of the order 
q≠1, can be estimated on the basis of the equation: 

 ε
τ

εε ln
1

)(
ln)()(

q

q
qDIq

−
=−=  (14) 

assuming the smallest applied observation scale of 
signal ε. 

In specific cases the Renyi measure is reduced 
to other fractal measures. The box dimension 
corresponds to q=0,  the information measure - 
corresponding to the Shannon entropy definition - 
is obtained for q→1, while the correlation measure 
being the probability of finding the pair of points of 
the phase attractor (reconstructed on the time series 
base) in the distance smaller than the determined 
distance, is the consequence of assuming q=2. 

The entropy span determined for segments of 
the highest and smallest energy of vibration signal, 
representing the most probable occurrences as well 
as the occurrences forming tails of the density 
probability distributions determined by the 
parameter ∆Iq(ε): 

 )()()( εεε qqq III −=∆ − ,  (15) 

is the measure of the multifractal level of the 
analysed time series. Multifractality level: 
 minmax hh −=∆ , (16) 

where  hmax and  hmin are singularities corresponding 
to the maximum and the minimum fluctuation of 
the observed signal, respectively, represents 
heterogeneity of the observed signal. Spectra and 
parameterised entropies of the simulated alpha-
stable, symmetric time series are shown in Fig. 3 
and 4. 
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Fig. 3. Multifractal spectra of simulated 

alpha-stable signals 
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Fig. 4. Parameterised entropy and the fractal 
dimension of the entropy of simulated alpha-

stable signals 
 

4. CASE STUDY OF TIME SIGNALS OF 

MECHANICAL VIBRATIONS IN THE 

VEHICLE POWERTRAIN 
 
Signals of accelerations of mechanical 

vibrations originated from the monitoring of the 
vehicle powertrain were recorded during 
investigations [15]. Successive measurements 
performed in equal time intervals, during road tests 
of the vehicle with S.I. engine 1.4 l represented 
values in the experimental data set. Experiments 
generated, after the angular resampling, time series 
consisting of 20 rotations of the crank shaft. Each 

time series of vibrations accelerations during 1 
work cycle of the engine contained 3600 signal 
samples in the determined for the test work 
conditions. Apart from the signal of the acceleration 
of vertical vibrations of the main gearbox housing, 
voltage from the sensor of the crankshaft position 
and voltage from the sensor of the throttle position 
were also recorded. Accelerations of vibration 
signals of the powertrain were processed by means 
of the Bruel & Kjaer sensors type IEPE No. 4514. 
Signals were recorded by means of the portable 
data recording device, Bruel & Kjaer PULSE type 
3560E with the sampling frequency of 65536 Hz. 

The resampled signal of a length of 72000 
samples were divided into segments of the same 
length and the scale range selection within limits: ε 
∈ (1⁄3600,1⁄4). The program of investigations 
included various maintenance states, being the 
effect of  mechanical defects, grouped into classes 
called symbolically: no-fault C1, initial wearing C2, 
and serious defect C3. Gearboxes  just before a 
failure or qualified for repairs or for exchanging 
elements were rated into the serious defect group. 
Typical averaged empirical and theoretical 
probability density functions of gearbox vibration 
signals and their right tails in the tested classes, are 
shown in Fig. 5 and Fig. 6, respectively. 

 
C1 

 

C2 

 

C3 

 
Fig. 5. PDF of gearbox vibration  signals in tested maintenance states 

 
C1 

 

C2 

 

C3 

 
Fig. 6. Right tail PDF of gearbox vibration signal in tested maintenance states 

 
A divergence of empirical distributions with the 

normal distribution was increasing along with the 
fault degree of the gearbox. During the goodness-of 
fit tests the conformity with the null hypothesis - 
assuming the normal distribution - was rejected for 
initial wear and serious defect. The verification of 
matching the alpha-stable model of empirical 
distributions was performed, after the preliminary 
graphical assessment, by means of the Anderson-

Darling test at the significance level 0.05. In no-
fault condition the p-value would be 0.11, which is 
not significant at the 0.05 level. In other tested 
maintenance states p-values would be 0.0005. 
There are several methods and algorithms of 
estimating the index and parameters of alpha-stable 
distributions on the basis of experimental data [5]. 
The results of quantile method, applied in 
investigation, are presented in  Table 2. 
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Table 2. Averaged parameters of alpha-stable 

distributions of gearbox vibration signals in tested 
maintenance states 

 good initial wear serious defect 
α 1,99 1,90 0,77 
β -0,03 -0,23 -0,01 
γ 11,92 11,83 34,76 
δ -0,46 -0,05 1,94 
 
Successive diagnostic features were obtained 

due to the transformation of signals from the time 
domain to the singularity domain. Multifractal 
spectra and parameterised entropies in a similar 
fashion as probability distributions of the tested 
gearbox signals differ in placements and in shapes. 
The average results of experimental tests and 
multifractal analysis are shown in Fig. 7 and 8. 
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Fig. 7. Singularity spectra of gearbox 

vibration signals in tested maintenance states 
 

 
 

Fig. 8. Parameterised entropy and the fractal 
dimension of the entropy of gearbox vibration 

signals in tested maintenance states 
 

Defined spectrum and entropy parameters are 
presented in Table 3. Parameters of stable 
distributions, measures of singularity spectra and 
generalised entropy were tested as diagnostic 
features allowing to classify the simulated 
maintenance states of the tested powertrain. 

 
 
 
 
 

Table 3. Averaged parameters of multifractal spectra 
of gearbox vibration signals in tested maintenance states 

 good initial wear serious 
defect 

∆ 0,85 0,90 1,32 
∆I10 (1/3600) 8,54 8,53 13,58 
∆I15 (1/3600) 9,70 9,65 14,58 
∆I20 (1/3600) 10,07 10,01 14,92 

 
The final classification was carried out by using 

3-dimensional vector of defects detection of 
coordinates corresponding to features: stability 
index - α, scale  parameter - γ and parameterised 
Renyi entropy - ∆Iq for order q≥10 . Index α 
describes impulsive character of signal and 
thickness of distribution tail. Parameter γ is a scale 
parameter and coordinate ∆Iq represents span of 
proportional abundance  determined for segments 
of the smallest and highest probability density of 
the vibration signal. The reduction of the feature 
vector dimension was performed by means of the 
principal components analysis realised by singular 
value decomposition algorithm [16, 26]. In each 
maintenance state a series of 100 experiments was 
performed. Categorising of the tested state to the 
proper class as well as the classification quality 
analysis was done by means of the nearest 
neighbours method. The cross-validation technique 
was applied for the accuracy assessing. The 
classification accuracy was assessed on the ratio of 
the properly classified experimental results to their 
total number. All tested maintenance states were 
divided with 100% accuracy of the classification. 

 
5. CONCLUSION 
 

Investigations of the vehicle gearbox indicated 
non-Gaussian, heavy-tail character and long-term 
correlations of mechanical vibrations signals in the 
tested powertrain during the developing damage. 
Applying the dependence between parameters of 
the stable distributions and singularity spectra 
signals, the multifractal fluctuation, generalised 
entropy as well as the partition function of the 
recorded time series analyses, were also performed. 
The feature vector functioning as the data-driven 
empirical diagnostic model, was selected and 
verified. The performed investigations confirmed 
the possibility of assessing the observed states of 
the dynamic system, on the basis of the probability 
density distributions of mechanical vibrations 
signals, by means of parameters of their alpha-
stable distribution and parameterised entropy. The 
proposed procedure of selection and classification 
can be realised within the vehicle on-board 
diagnostic system in the determined operating 
conditions. The currently continued research is 
focused on building experimental, non-linear 
diagnostic models and classification algorithms of 
the most often occurring mechanical defects in the 
vehicle powertrains. 
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