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Abstract 

The rotors can be balanced using two different methods: a modal method and an influence 

coefficient method. Until recently, it was generally viewed that the former method can be used for 

balancing rigid rotors, whereas the latter method for balancing flexible rotors. Nowadays, the 

difference in classification of rotors and the approach to balancing have changed. The study 

presents general differences between the two balancing methods and compares the efficiency of 

balancing the flexible rotor using the modal method and the influence coefficient method. 
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EFEKTYWNOŚĆ METODY MODALNEJ WYWAŻANIA WIRNIKÓW GIĘTKICH 

 

Streszczenie 

Wyważanie wirników przeprowadza się głównie dwoma metodami: modalną oraz macierzy 

współczynników wpływu. Istniało przekonanie, że pierwsza z wymienionych jest stosowana do 

wyważania wirników sztywnych, druga do wyważania wirników giętkich. Obecnie zatarciu uległa 

różnica w klasyfikacji wirników oraz zmienił się sposób podejścia do zagadnienia ich wyważania. 

W pracy przedstawiono zasadnicze różnice pomiędzy tymi dwoma sposobami wyważania oraz 

porównano efektywność wyważania wirnika giętkiego metodą modalną oraz metodą macierzy 

współczynników wpływu. 

 

Słowa kluczowe: metoda macierzy współczynników wpływu, wyważanie modalne, funkcje 

ortogonalne 

 

 

1. INTRODUCTION 

The simplest balancing process is available for a 

statically unbalanced rigid rotor where the centre of 

mass and the axis of rotation do not coincide, 

whereas a dynamically unbalanced rigid rotor is a 

more complex case. The forces acting on the rotor 

can be reduced to a resultant vector and a resultant 

moment, and the balancing requires more than one, 

usually two correction planes.  

A serious issue can be observed when balancing 

rotors which are subject to significant distortions in 

operation, in particular if the rotational speed 

approximate its critical speed.  

Two different approaches to the flexible rotor 

balancing are available. The first approach, more 

commonly used, is based on the influence 

coefficient method which assumes causality between 

rotor unbalancing and its response to a constraint 

determined at any point, usually at the point of 

bearing. The modal balancing is of limited 

significance. The method assumes, that the shape of 

the unbalanced rotor axis approaches a specific 

form, characteristic for a specific critical speed. The 

modal balancing requires multiple rotor starting - 

one for each critical speed and the analysis of 

obtained data to select suitable correction weights 

and correction planes. 

The flexible rotor balancing procedures are 

based on the modal characteristics of its response to 

the constraint. In this method, each modal form is 

compensated by a set of weights selected to avoid 

any interferences in the balancing effects for other 

forms. Two important assumptions are valid: 

(1) the damping in the system is low and 

negligible, 

(2) the forms are flat and orthogonal. 

A balancing technique similar to the modal 

balancing has been first described by Grobel [1] and 

modified both theoretically and practically by 

Bishop [2] (Bishop, 1959), Bishop and Gladwell [3], 

and Bishop and Parkinson [4]. 

Other researchers, Saito and Azuma [5] and 

Meacham et al. [6] have published the studies on the 

modal method and have resolved several issues with 

balancing the rotors without an evident vibration 

form corresponding to the natural frequency as well 

as balancing rotors showing residual bending. The 

authors have also developed balancing procedures 

for higher vibration forms allowing for the effects of 

rotor weight. The methods have been presented and 

discussed by Darlow [7] The analytical methods are 

applied to determine the distribution of the 

correction weights in most cases of the modal 

balancing, although an in-depth knowledge of the 

dynamical model of the rotor is essential. 
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Numerous studies addressing the unbalance 

identification methods and other rotor imperfections 

as well as rigid and flexible rotor balancing have 

been developed in the recent years. The authors 

often try to convince us of the ingenuity of a specific 

method. In most cases, the procedures have the same 

disadvantage, which is a limited applicability in the 

industrial conditions. 

Sudhakar and Sekhar [8] have suggested an 

unbalance identification method by reducing the 

function of the difference between the system 

response to an actual constraint and the load 

equivalent to a theoretical system model. The 

function arguments include parameters defining 

imperfection and an equivalent load value is 

determined based on a numerical model and 

measured vibration parameters. The imperfection 

models are created as the mathematical models of 

damage induced constraints. The method is based on 

a widely used method of damage symptom 

identification using numerical modelling [9]. 

The method presented by Khulief et al. [10] is 

based on standard high-speed flexible rotor 

balancing methods. As the authors explain, the 

method can be applied in balancing rotors in their 

own bearings. Its main advantage is that it does not 

require test weights and allows simultaneous 

balancing for several modal forms. It is crucial, 

since individual balancing of the rotor for one modal 

form affects the unbalance of a different modal 

form. 

The balancing procedure should be accurate 

and, especially for machine rotors, should be quick 

and preferably automatic. Additional runs with the 

test weights take time, although since the quality 

factor achieved after one correction run depends on 

the test weight location, it can be changed by 

increasing the number of test runs, especially in 

cases where balancing is performed by reducing 

weight. 

The method has been developed by 

Northwestern Polytechnical University team [11]. 

The test runs have been eliminated by numerical 

rotor modelling. Based on the experimental results 

for rotor with four disks, the deflection has been 

reduced by 80% after balancing at the first critical 

speed. Initial deflection reaching its maximum value 

of 0.12 mm at the first critical speed has been 

reduced to 0.06 mm. 

Taplak et al. [12] have presented a simple rotor 

balancing method using an optimization theory 

based on a genetic algorithm. This solution can be of 

particular interest in determining the disk position of 

manual or automatic balancers [13]. 

A promising step in the direction of actual 

development of the balancing methods is a 

holospectrum method [14]. Traditional balancing 

methods are based on time curves recorded in one 

direction on up to two planes. The actual rotor 

movement is complex and must be defined by more 

than a measurement of its parameters in a single 

direction or on a plane of one or even both bearings. 

The stiffness anisotropy, mostly of the rotor support 

but also of the shaft itself, requires the balancing 

process to be based on more accurate analysis of the 

nature of rotor vibrations, at least in orthogonal 

directions, which is part of the holospectrum 

method. 

In his previous study, Liu [15] has described a 

course of flexible rotor balancing process, where the 

holospectrum is subject to decomposition into modal 

components. Rotor unbalance in the first two forms 

has been removed at rotor speed lower than its first 

critical speed. 

2. EQUATIONS OF FLEXIBLE ROTOR 

MOTION 

One of the criteria for classification of rotors 

into rigid and flexible is their critical speed [16]. The 

rotors with operating speed approximating or 

exceeding the critical speed are classified as flexible. 

Each rotor, to a lesser or greater extent, is subject to 

elastic deformation, and thus this criterion is highly 

inaccurate. Rieger [17] has defined five rotor 

categories, one of which includes flexible rotors. 

The power turbine rotors are often analysed in 

this context [18][19] and it is recommended to 

determine the critical speed by measuring a static 

deflection of the rotor. (For rotors with critical speed 

of 3000 rpm, the deflection is approx. 0.1 mm). Due 

to self-aligning feature, the turbine rotors operate at 

speed higher than a first critical speed. It is 

recommended to assume the static deflection higher 

than 0.1 mm at the turbine rotor design stage. 

The modal balancing is based on the concept of 

a deflection curve demodulation into its modal forms 

to balance the flexible rotor individually for each 

form. 

  

Fig. 1. Diagram of a modal balanced rotor 

Fig. 1 shows a slim rotor supported by self-

aligning bearings on both ends. The rotor unbalance 

results from non-symmetrical distribution of its 

weight in relation to its axis of rotation. The relative 

displacement of the shaft axis and the bearing line is 

determined as a. During its rotation around the z 

axis, the rotor is affected by an inertia force Fb 

determined by rotor unbalance and rotational speed 

  2

0

L

b A a z dz  F  (1) 
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Fig. 2 shows a non-inertial reference system 

rotating along with the analysed rotor. In relation to 

the system coordinates   and  , the equations of 

motion of the rotor component in a selected cross-

section (determined by the position on the z axis) are 

defined as (2) 

 

 

 
Fig. 2. Reference systems for rotor dynamics 

analysis 
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Where ,  are the coordinates of the centre of 

cross-section of the rotor component, a a 
   a  

is a displacement vector of the rotor component’s 

centre of mass in relation to its axis of rotation,  is 

an angular velocity, EJ is a flexural rigidity of the 

rotor’s cross section, A is a unit weight, Ci, Ce  are 

the coefficients of structural and external damping, z 

is a rotor component’s coordinate on its axis. 

By adding complex values: 

,  i a a ia        and defining the relation 

between damping, resonance vibration frequency 

and rotor weight as 

 2 ,      C 2i eC A A    (3) 

Where  and  are the damping coefficients, and  

is the resonance vibration frequency of the rotor. By 

multiplying the second equation by 1i    and 

adding to the first equation we have 

 
 

 

2

4
2

4

2 2i i

EJ
a z
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      


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             


  
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 (4) 

Displacement of the centre of gravity  a z  in 

relation to the axis of rotation can be defined as a 

series 

        1 1 2 2

1

... j j

j

a z a z a z a z  




     (5) 

where: Re Im

j j ja a ia  , and  j z  are the orthogonal 

functions satisfying the boundary conditions. A 

complex coordinate  can also be developed as a 

function of position and time into the following 

series 

 
         

     

1 1 2 2

1 1

, ...

,j j j

j j

z t t z t z

z t t z

    

  
 

 

   

  
 (6) 

An expression 
j  is a complex function  

      , , ,Re Im

j j jz t z t i z t     .  

The natural vibrations of the rotor are defined as 

the relation (7) 

 
4 2

4 2

EJ

A z t

 



 
 

 
 (7) 

where:   ji t

j t e


   and 

    
1

, ji t

j

j

z t z e


 




  (8) 

Therefore for each modal form, the following 

equations are satisfied 

 
 

 
4

2

4
 j ji t i tj
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2

4

j

j j
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A z
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


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Allowing for the dependence (4) we obtain the 

equation of rotor motion for the j-th modal form as 

 
 

2 2 2

2

2

j j j j j

j j j j j j

i

i a

    

    

     
 

        

 (11) 

If we omit the structural damping by assuming  , the 

solution to the equation (11) is 

 

 

2

2 2 2 2

2
;  

2

j j j

j

j j j j

a
arctg

i

 
 

   

 
 

   
 (12) 

Multiply the expression (5) by the function 

 k z  and integrate from 0-L 

        
10 0

L L

k j j k

j

a z z dz a z z dz  




   (13) 

As results from the function orthogonality 
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    
0

0  for   

L

j kz z dz j k     

      
2

0 0

 for  

L L

j k jz z dz z dz Z j k         (14) 

We can determine the subsequent coefficients in the 

series (5) 
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


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

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 (15) 

3. FLEXIBLE ROTOR BALANCING USING 

MODAL METHOD 

Let us consider a symmetrical rotor (Fig. 1) 

supported on both ends by two bearings featuring a 

linear rigidity. The rigidity of the rotor itself is also 

linear and isotropic. The effect of damping and 

gyroscopic effect is negligibly small. A constant 

distribution of the unbalance along the rotor axis can 

be defined as 

      0u z A z a z  (16) 

Where  is a rotor material density, A(z) is a 

cross-sectional area of the rotor as a function of its 

length, a(z) is a function defining the distribution of 

eccentricity along the rotor axis without any 

deformations. 

The unbalance, both constantly and discretely 

distributed in the N cross-sectional planes of the 

rotor can be defined as 

    0

1

N

p

p

u z u z U


   (17) 

The equations defining the conditions of the 

modal balancing are as follows 
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If the rotor is balanced in relation to pm modal 

forms, it requires correction in pm+2 planes. Thus, 

the following conditions must be satisfied 
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4. NUMERICAL EXAMPLE 

The numerical example applies to the rotor 

model often used in industrial applications. 

 

 

 
 

Fig. 3. Paper machine dryer rotor - Dimensions 

and balancing method: 1. - balancer measuring 

system, 2. shaft, 3. support. 

Fig. 3. Paper machine dryer rotor mounted on 

stationary balancer supports. The shaft is balanced in 

two planes. The correction weights are attached to 

the holes drilled in the bottom. The main condition 

that must be met for the paper tape to achieve 

uniform thickness, and to prevent tearing is not only 

to eliminate vibrations in the bearing-shaft system 

but also to reduce strain corresponding to the shaft 

vibration form at critical speed (usually first critical 

speed). The balancing in two planes is not sufficient 

in this case. Thus, it is suggested to balance the 

shafts featuring high slenderness ratio, i.e. dryer 

rotors using modal balancing technique. In industrial 

applications, the change in balancing method must 

be preceded by a thorough analysis to determine its 

results. Thus, it is necessary to show the superiority 

of modal balancing technique over standard 

influence coefficient method in this specific case. 

corrective masses 

1 

2 

3 
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It is difficult to determine the distribution of an 

actual unbalance of the rotor. A numerical model 

presented in Fig. 4 is used in the analysis, where the 

unbalance is caused by the displacement parallel to 

the axis of rotor rotation in relation to the axis of 

symmetry by 1 mm. This unbalance state is specific 

to paper machine tubular shafts where the wall 

thickness is not uniform at the entire circumference 

or if the shaft neck and shell are misaligned. 

 

 

 

Fig. 4. Model for numerical analysis of rotor 

balancing 

 

The rotor length is 800 mm and its weight is  

0.378 kg. The rotor is supported by rigid bearings. 

Fig. 5 shows the critical speed and corresponding 

vibration forms up to a tertiary form. The weight 

eccentricity of 1 mm at uniform distribution along 

the rotor length results in the unbalance Up=0.378 kg 

mm. 

   
41 Hz 101 Hz 189 Hz 

Fig. 5. The first three modal forms of the rotor 

model used in balancing simulation 

 

Fig. 6 shows the path of the centre of rotor mass 

motion and the amplitude-frequency characteristics 

of the vibration speed. The balancing was performed 

at  

35 Hz rotation frequency, below the critical 

frequency (41 Hz). 
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Fig. 6. Trajectory of movement and amplitude-

frequency characteristic of the speed of vibration of 

the mass center of the rotor before balancing 

 

The relation between the weight eccentricity and 

the unbalance is defined as the relation (16). The 

rotor balancing in its first modal form p=1 requires 

k=p+2=3 correction planes. 
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A z L m
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
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The first form of the natural vibrations of the 

rotor is defined as a function 

  1 sin
z

z
L


   (21) 

thus 
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2
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L L L
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
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  (22) 

The unbalance values based on equation (19) are 

U1=U3=235 gmm and U2=91.5 gmm. The 

correction weights added to the rotor in the distance 

of 10 mm from the axis of rotation for the rotor 

without any deformations are 23.5 g and 9.15 g. The 

weights must be distributed to achieve a zero total 

rotor unbalance. 

The corrected weights used will determine the 

unbalance error 

 1 2 3

0.378 0.235 0.0915 0.235 0.0005 

pU U U U

g mm

   

      
 

Fig. 7 shows the rotor condition after balancing, 

with the path of the centre of rotor mass motion and 

the spectrum of rotor vibration speed determined for 

its centre of mass. 

The vibration amplitude values were reduced 

threefold as a result of modal balancing with modal 

function selected using the approximate boundary 

conditions. The correction weights were selected 

based on the equilibrium of forces acting on the 

rotor for the assumption that the modal function 

determining the unbalance distribution is correct for 

the articulated bearing. The bearing models used 

require boundary conditions with no displacement 

axis of rotor 
symmetry 

axis of rotor 
rotation 

a(z) 

0.25L 

0.75L 
0.5L 

correction 

weight 

flexible shaft  

rigid bearing  

coupling  

drive  
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and zero deflection angle in the bearing point. The 

reduction of natural rotor frequency to 38 Hz is the 

result of an increase in weight by 56.15 g 

corresponding to almost 15% of the rotor weight 

before balancing. 
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Fig. 7. Trajectory of movement and amplitude-

frequency characteristic of the speed of vibration of 

the mass center of the rotor after balancing 

 

A simulation of balancing using the influence 

coefficient method was carried out for comparison. 

It is a purely experimental phase method based on 

the assumption that the system’s response to the 

constraint depends on this constraint’s value. This 

relation can be described by the dependence (23) 

 
n nN AF  (23) 

Where Nn is a rotor response vector, A is an 

influence coefficient matrix and Fn is an unbalance 

vector. The constraint vector correcting the 

unbalance can be defined as 

 1

k n n

   F F A N  (24) 

provided that the influence coefficient matrix is 

known and is quadratic. If the influence coefficient 

matrix is not known, it must be determined by the 

analysis of the rotor response to a known constraint 

added to the rotor as a test weight. Its weight and 

position on the rotor are arbitrary, although wrong 

position and test weight will increase the rotor 

unbalance. This effect can be reduced by adding a 

correction weight. 

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

mm

m
m

 

3
5
 H

z

0

0,5

1

1,5

2

2,5

3

0 50 100 150

Hz

m
m

 

Fig. 8. Trajectory of movement and amplitude-

frequency characteristic of the speed of vibration 

of the mass center of the rotor after attachment of 

the trial mass of 9.5g 

Fig. 8 shows an example. A 9.5 g test weight 

added to the rotor has increased the vibration 

amplitude of the centre of rotor mass five times.  A 

single-plane balancing method was used where the 

correction plane was selected corresponding to a 

plane perpendicular to the rotor axis including its 

centre of mass. This approach is often used for 

balancing the paper machine cylinders.  

The correction weight calculated with a formula 

(24) is 12.5 g. The test weight resulting in the 

increase in vibration amplitude must be removed and 

the correction weight must be added to the rotor in a 

point determined by the orientation of the vector Fk 

in the reference system specific for the rotor. Fig. 9 

shows the balancing effect. 
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Fig. 9. Trajectory of movement and amplitude-

frequency characteristic of the speed of vibration of 

the mass center of the rotor after balancing 

 

Based on the comparison of the rotor vibration 

amplitudes after balancing using both methods, it 

can be assumed that the modal method yields a 

better dynamic state of the rotor. The influence 

coefficient method balancing was carried out for a 

single correction plane and a single balancing stage. 

In addition, it is also significant, that to achieve the 

effect showed in Fig. 9, it is sufficient to add a 

weight four times smaller than the weight used in the 

modal method. 

Rotors with disks (power turbine and turbo 

generator rotors) can also be balanced using modal 

balancing technique. Fig. 10 shows turbo generator 

and its rotor. Machine rotor speed is almost 11,000 

rpm. At such speeds, deformation can significantly 

affect rotor durability. 

  

Fig. 10. Turbo generator and high and low 

decompression stage rotors 
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Fig. 11 shows the efficiency of modal balancing 

of rotors with disk on the test stand. The unbalance 

model can be presented as a concentrated unbalance 

Un. at the middle of the rotor length. Balancing was 

performed at near first critical speed p=1. The 

number of correction planes was n=p+2. The 

correction planes were arranged symmetrically in 

the distance of 0.25L, 0.5L, 0.75L, where L is the 

rotor length. 

The rotor shown in Fig. 11 includes a shaft with 

10 mm diameter and weight as specified in the 

numerical example. The rotor is supported in ball 

bearings on both ends. A 1.2 kg disk, used as one of 

the correction planes is seated in the middle of the 

shaft. Rotor shaft deflection in a specific cross-

section in orthogonal directions was measured with 

eddy current sensors fixed in the micrometre clamps. 

 

 

 

Fig. 11. Test stand and modal rotor unbalance 

model. 

1. bearing base, 2. rotor, 3. support with micrometer 

screws and eddy current sensors, 4. motor 

 

A 12.3 g weight was attached to the rotor disk, 

equivalent to ca. ~1% disk weight. The rotor was 

balanced at 22 Hz rotation frequency, below the 

critical frequency (23 Hz).  

Fig. 3 shows a solid rotor. Non-solid rotor also 

features disks and in this case the location of its 

unbalance is difficult to determine, since the 

standard modal balancing techniques are non-phase 

methods. 

Both unbalance value and location were known 

and determined to maintain the standard operating 

conditions using phase method, i.e. influence 

coefficient method. The quality factor of rotor 

balancing is a reference point to determine the 

efficiency of modal balancing technique. 

The unbalance value was determined based on 

the change in rotor response to a known constraint. 

Rotor vibration parameters were measured at its 

support point. To eliminate the support stiffness 

anisotropy, a bearing displacement was measured in 

horizontal and vertical direction with a single 

correction plane. The size of the influence 

coefficient matrix was 4x1. The correction vector 

cannot be derived from the equation (24), which is 

replaced with 

  
1

n n


F A N  (25) 

where A
 is the Moore–Penrose pseudoinverse 

matrix. The method is suggested by the author as a 

standard method for balancing rotors in their own 

bearings. Its superiority to standard two-plane 

balancing technique has been verified by balancing 

rotors with different imperfections. Determined 

unbalance Un = 492 gmm was corrected by 

attaching mb1, mb2, mb3 weights. The unbalance for 

the first modal form can be derived from 

  1 1 1 0T

n bU U   (26) 

Vector 1 and Un are defined by 

  1

2 2
, 1, ,   0,  492, 0  

2 2

T

n g mm
 

   
 

U  (27) 

The correction value is Ub1= -246 gmm. Its 

distribution is defined by vector Ub1 

  1 1 1 174,  246,  174  b bU g mm     U   (28) 

After attaching the weights to correct 

distribution (see equation 28) anticipated rotor 

unbalance was 

 
0 174 174

492 246 246  

0 174 174

c g mm

      
     

    
     
           

U  (29) 

It indicates that the rotor is not balanced 

correctly as a rigid rotor and is balanced correctly as 

a flexible rotor at its first and second critical speed. 

For rotor to operate at third critical speed, it would 

be necessary to determine a new correction 

distribution. 

  3 3 3 3 3 3;     T

c b b bU U U U    (30) 

Allowing for the balancing quality factor, shown 

in Fig. 11b and the fact that subsequent critical 

frequencies of 162 Hz and 218 Hz can be achieved, 

it can be assumed that the rotor is balanced 

correctly. 

   
Fig. 12. Rotor holospectrum: a) before balancing,  

b) after balancing using influence coefficient 

method, c) after balancing using modal balancing 

technique 

1 
2 

3 4 

c b a 
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Comparison of the unbalance quality factor after 

balancing using the influence coefficient method 

(Fig. 12b) and modal balancing technique (Fig. 12c) 

shows that the values are similar. The difference in 

the amplitude of rotor vibration parameters at its 

point of support is negligibly small. Lower rotor 

deflection can be achieved by using the modal 

balancing technique, and in some cases, the 

difference is significant. 

5. CONCLUSIONS 

A conviction that the flexible rotors must be 

balanced using the modal method is no longer valid, 

since as shown in this study, the rotors can be 

successfully balanced using the influence coefficient 

method. The method is currently used for balancing 

standard flexible rotors such as the power turbine 

rotors. The turbine rotor balancing in its bearings 

was carried out using the influence coefficient 

method, whereas the modal balancing was usually 

carried out during overspeeding. Nowadays, even 

the turbine rotor balancing on a stationary balancing 

machine with isotropically supported bearings is 

carried out using the influence coefficient method. 

There is a significant difference in rotor 

balancing speed between the modal method and the 

influence coefficient method. The former is 

performed at speeds approximate to the critical 

speed, whereas the near-resonance frequency range 

is not recommended for the latter method. 

The influence coefficient method yields a higher 

quality factor, if the reduction of bearing vibrations 

is essential, in particular, it applies to the rigid 

rotors. The modal balancing aims to reduce the 

eccentricity of the rotor mass in relation to its axis of 

rotation. It is obvious, that in this case the 

centrifugal force, resulting from rotor unbalance, is 

reduced. A reduction in constraint is accompanied 

by a reduction in amplitude of dynamic response, 

although it is a secondary effect. 

The modal balancing, although based on a solid 

theoretical base, is no match for the influence 

coefficient method, which is an experimental 

method allowing a better correlation between the 

constraint and the rotor response in a specific point 

of measurement. 

Despite its drawbacks, the modal balancing is 

not completely superseded in the engineering 

practice and is in constant development. The new 

holospectrum based balancing method is the best 

example. 

The ingenuity of the presented flexible rotor 

balancing method lays in combining the modal 

balancing technique and the influence coefficient 

method. The advantage of the solution has been 

observed by Drechsler [20] although the method is 

completely different. It uses fluctuation method to 

determine the influence coefficient matrix and the 

location of residual unbalance in rotor cross-

sections, at which the rotor vibration amplitudes in a 

wide range of rotor speeds are minimum. The author 

uses the specific features of the influence coefficient 

method, which as a phase method allows to pinpoint 

the actual location of rotor unbalance. It is clearly 

shown in the numerical example with known 

unbalance distribution, which usually is not the case 

in practice. Unbalance must be determined and the 

phase method is in this case very effective. The 

flexible rotor unbalance distribution is determined 

based on the measurement of bearing vibration 

parameters and their optimization in orthogonal 

directions by using the influence coefficient matrix 

as the Moore–Penrose pseudoinverse matrix. 
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