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Abstract  

This work presents a procedure for bearing degradation monitoring at an early stage. The analysis of 

variance (ANOVA) coupled with Tukey’s test is used to single out the suitable parameters to follow the fault 

size evolution ranging from 50 µm to 150µm. The Tukey's criterion is adopted in this case to study the ability 

of time and frequency indicators. The rotational speed, centrifugal load and fault size are considered as 

independent variables while the time and frequency indicators are taken as dependent variables. The 

experiments are performed on bearings having a fault on outer race. Based on the results of this study, the 

Kurtosis and Skewness show a good ability to assess the evolution of degradation in the bearings at an early 

stage. The paper discusses the weakness of the time and frequency indicators. 

  

Keywords: ANOVA, DOE, Time descriptors, Bearings fault. 

 

1.  INTRODUCTION 
 

When a fault appears on one of the bearing 

elements (inner ring, outer ring, roller element or 

cage), it is necessary to follow its evolution in order 

to proceed for preventive maintenance and 

anticipate breakage and avoid production shutdown. 

Statistics of maintenance service, in the 

petrochemical industries, show that 52% of rotating 

machinery failures come from bearing defect. 

Sometimes, the bearing life given by manufacturers 

is incorrect and misleading. In fact, it is estimated 

that only 30% of bearings lifetime of aging caused 

by the surface fatigue [1]. Consequently, the 

development of methods for detection bearing fault 

at an early stage is essential for the prevention of 

rotating ma-chines. Currently, the most used tools 

of bearing monitoring are: temperature 

measurements, acoustic emission, oil analysis 

(analysis of debris wear) and vibration analysis [1]. 

The latter is widely used for bearing fault 

monitoring. I. Bazovsky [2] introduced the use of 

mathematical optimization method in the 

philosophy of preventive maintenance. Various 

signal processing techniques involving time, 

frequency, and statistical methods have been used 

to detect and check the progress of the incipient 

fault [3]. The extraction of meaningful information 

from these data is always challenging especially 

due to the presence of noise that masks the 

interesting information and, therefore, it calls for 

different approaches to analyze the data. N. Tandon 

and A. Choudhury studied the application of 

vibration analysis and acoustic emission in the 

detection of bearing faults [4]. There are several 

methods used for bearings monitoring, some of 

them are easy to apply while others are based on 

signal processing [5]. Shocks are usually created in 

the presence of faults and can be analysed either in 

the time do-main [6] (RMS and max-peak 

amplitude of vibration level, Crest factor and 

Kurtosis, detection of shock waves method [7], 

statistical parameters applied to the time signal, 

Cepstrum [8], etc.); or in the frequency domain 

(spectral analysis around bearing defect frequencies 

[9], Spike energy [10], high frequency 

demodulation [11], Empirical modal decomposition 

[12], acoustic emission [13], cyclostationnarity 

[14], time-frequency [15, 16], Fast Fourier 

Transform [17], Wavelet [18], Kurtogram [19], 

artificial neural networks [20], etc). Statistical 

methods are used to assess structural health [21]. 

The design of experiments (DOE) has been used 

widely in the field of tribology. The effect of 

cutting parameters on surface roughness and flank 

wear was analysed using this method [22]. Other 

works had exploited the same method for studying 

the tribological behavior of composites Cu/silica in 

the presence of the effect of solid braking load, 

sliding speed and lubricants. 

The present work uses the application of method 

of analysis of variance (ANOVA) alongside 

Tukey's multiple comparison test to select the good 

indicator for bearing degradation at an early stage.  

One-way Analysis of Variance (ANOVA) is used 

to study the efficacy of time and frequency 

indicators to follow the evolution of fault size at an 

early stage ranking from 50 µm to 150 µm. Tim 
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descriptors such as RMS, crest factor, and kurtosis 

are generally used for statistical analysis. For the 

present study, 2. Overview of the Analysis of 

variance (ANOVA) and Tukey's multiple 

comparison tests parameters. Skewness and kurtosis 

are considered to be a good parameters to assess 

defectiveness in the bearing at an early stage 

ranging from 50µ to 150 µm. The experiments are 

performed on bearings having a fault on outer race.  
 

2. OVERVIEW OF THE ANALYSIS OF 

VARIANCE (ANOVA) AND TUKEY'S 

MULTIPLE COMPARISON TESTS  
 

In the first time, we conducted experimental 

tests using a full plan. Then, all time and frequency 

indicators were calculated. All data are organized in 

Table 5. Finally, an analysis of variance coupled 

with the multiple comparisons using Tukey's test 

was run. In the following, the application of this 

procedure is explained. 
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Where: H0 and H1 are the null and alternative 

hypothesis, respectively. The significance level of 

the test in this paper is set to α =0.05. For a 
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measured results. Once the total variability is 

decomposed (within + between), we compare these 

two components. The scalar value used to asses this 

is the F-ratio given by:   
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After obtaining the F-ratio, the probability value 

p value  is obtained through a comparison with 

the F-distribution ( ; 1, )F k N k   . If some of the 

mean values are different, the numerator in Eq. (5) 

tends to be larger. If ( ; 1, )F F k N k   , then H1 

can be accepted. However, this is not sufficient to 

reject the H0 hypothesis. In case of p-value smaller 

than alpha the null hypothesis should be rejected, 

otherwise, there is no statistical significance to 

reject the null hypothesis. 

Furthermore, we need to determine which pairs 

are significantly different. In this regard, the 

Tukey’s test   provides the ability to perform 

multiple comparisons between several pairs of 

groups to determine significant differences between 

the means [24]. This latter is coupled with the 

ANOVA method. It is worthy to be noted that there 

is a test similar to that of Tukey called t-test; 

however this latter test can only compare the means 

between two groups. In our case, the Tukey test is 

preferred because it compares the means of a set of 

pairs of groups. Generally, the confidence interval 

is calculated by: 

 ; , /wgq k N k S l          

This interval is used to quantify the 

effectiveness of an estimator. The difference 

between two means is computed using the 

following equation:   

wg

r s
( ) q( ;k ,N k )

l

S
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Where  q(α;k,N-k) is the 100× (1-α) percentage 

of the considered ranges distribution for comparing 

k mean values. The major disadvantage of this 

method is that it is valid only for samples in equal 

size. Using only the ANOVA method cannot 

provide any information on significant differences. 

To circumvent this obstacle, we need to couple the 

ANOVA with the Tukey test. The introduction of 

the Tukey test using a specific confidence interval 

allows the determination of the means that are 

statistically difference. 

 

3. MATERIALS AND METHODS 

 

The test bench is composed of a shaft driven by 

an electric motor (Fig.1.A) with speed controlled by 

a drive controller. The shaft is guided in rotation by 

two bearings and connected to the motor by a 

flanged coupling bolted rubber. At the end of this 

shaft, a disc weight of 4.7 kg can be maintained and 

can be loaded with unbalance mass (which provides 

a rotating load and thus a centrifugal force). 

The bearings used are "ball bearings cylindrical 

and tapered bore" SKF brand and 1210 EKTN9 

model. The bearings have induced fault (groove) of 

different sizes on the outer race. Since the objec-

tive of this study is the early detection of fault 

grooves with very small width were artificially 

created by electro-erosion and measured with a 

microscope. Three defective bearings with groove 

widths of 50, 100 and 150 micrometers were used. 

The frequencies [1] symptomatic of the fault of the 

bearings are shown in (Table 1). 
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Fig. 1: (A) – Experimental setup; (B) – A very small 

defect of outer race 

 

Table 1. Bearing frequencies 1210 EKTN9 

 

The acquisition chain is shown in Fig 2. It is 

composed of piezoelectric sensors (352C34) with a 

sensitivity of 100 mV/g for the measurement of 

vibrations. Sensor is connected to an analogue 

digital converter THOR PRO Analyzer: DT9837-

13310 with a sampling frequency of 48 kHz. Each 

recording lasted 5 seconds, which means that each 

time data file contains 240 000 samples. Using a 

tachometer was also necessary to verify that the 

actual speed of the shaft corresponds to that 

displayed on the inverter. 

 
Fig. 2. Data acquisition system 

 

In this work, the considered factors are the fault 

size (3 sizes), the centrifugal load (3 loads) and 

rotational speed (3 speeds).  Table 2 presents the 

factors and their levels. A full factorial design was 

selected for accuracy and the experimental plan 

included all possible combinations. This means that 

we have 3 × 3 × 3 = 27 trials. 

In order to follow the evolution of the fault size, 

we maintain for each sample the same conditions 

(rotational speed and centrifugal load) and we change 

only the fault size ranging from 50 µm to 150 µm. 

For this reason, we establish all the possible 

combinations between shaft speed and centrifugal 

load and we vary for each combination the fault size. 

 
Table 2. Summary of experiments 

Group
s 

Bearing 
default 

size 
(µm) 

Rotational speed 
(rpm) 

Centrifugal 
load (N) 

Group 
1 

50 300 600 900 50 130 210 

Group 
2 

100 300 600 900 50 130 210 

Group 
3 

150 300 600 900 50 130 210 

Equation 7 was used to calculate the effect of 

the centrifugal load. Note that the speed and 

rotating load are dependent on each other. To study 

the effects of these two parameters separately, a 

method based on the use of multiple masses for 

adjusting the rotational force effect was used. 
2f m R                                 (7) 

The objective is to maintain 3 force levels for 

each speed. Table 3 summarizes the 9 different 

masses to be applied to offset the effects of speed 

and keep the three load levels. The intention in this 

paper is not to study this phenomenon. It is rather to 

satisfy the application conditions of ANOVA. The 

results for each group and for each indicator are 

given in table 5. 
 

Table 3.  Summary of compensation masses. (V-

rotational speed, m-applied masses and L- centrifugal 

load) 
V  300 600 900 

m  441 1145 1850 110 286 463 49 127 206 

L  50 130 210 50 130 210 50 130 210 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Time descriptor 

In the time domain, the statistical indicators 

considered as dependent variables are: RMS, 

Kurtosis, Skewness, Peak and crest factor. They are 

detailed in Table 4. Using vibrations measurement, 

the effectiveness of these indicators is analyzed in 

order to monitor bearings degradation at an early 

stage. Table 5 shows the experimental results for 

each indicator. 

 
Table 4. Time indicators. 

 

4.2 Frequency indicator BPFO 

   In the frequency domain, we compute the first 

peak amplitude of BPFO (Ball Pass Outer Race) to 

evaluate the bearings degradation. To do so, build a 

numerical program which is used the theoretical fault 

frequency given by the constructor to determine the 

interval in which the real fault frequency is located. 

This latter is found by searching the maximum of 

BPFO amplitude within this interval (BPFO ±f). An 

example of raw vibratory signal measured during one 

second are shown on (Fig. 8). 

 

Rotation frequency 2xBSF BPFO BPFI 

Order 1 6.55 7.24 9.76 
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Fig. 3 raw signal for defective bearing 50 µm 

In Fig. 4 the signal spectrum is plotted as showing 

the real peak frequency and the two limits BPFO ± ƒ 

of the surrounding interval. 

 

Fig. 4. Envelope spectrum for vibration measurement 

Table 5 gives the experimental results for each 

indicator according to the values of the fault size, ro-

tational speed and centrifugal load. Note that the 

indicators are sensitive to these variations.   

 

Table 5. Experimental results for each indicator (F-fault size, V-rotational speed, L-centrifugal load)

Run F,  µm V, rpm L, N RMS Kurtosis Peak Crest factor Skewness BPFO 

1 50 300 50 0,027 16,932 0,562 16,248 2,351 0,0012 

2 50 600 50 0,128 17,815 2,241 16,922 2,992 0,0122 

3 50 900 50 0,273 11,099 4,139 11,803 2,317 0,0291 

4 50 300 130 0,026 19,705 0,608 17,384 2,557 0,0011 

5 50 600 130 0,124 14,744 2,534 16,463 2,799 0,0107 

6 50 900 130 0,284 9,461 3,728 11,194 2,164 0,0305 

7 50 300 210 0,026 25,058 0,745 17,847 3,241 0,0010 

8 50 600 210 0,127 15,581 2,653 17,712 2,809 0,0105 

9 50 900 210 0,335 11,326 4,708 13,247 2,318 0,0338 

10 100 300 50 0,035 33,156 0,637 23,779 2,232 0,0025 

11 100 600 50 0,114 28,673 2,005 20,384 3,425 0,0126 

12 100 900 50 0,351 21,128 3,193 11,698 2,684 0,0446 

13 100 300 130 0,035 30,167 0,497 19,406 2,323 0,0024 

14 100 600 130 0,149 27,259 1,914 15,471 3,340 0,0164 

15 100 900 130 0,333 17,391 3,340 11,762 2,792 0,0391 

16 100 300 210 0,042 26,630 0,445 17,224 2,283 0,0031 

17 100 600 210 0,152 25,414 2,124 16,914 3,399 0,0158 

18 100 900 210 0,355 21,810 4,417 13,168 3,008 0,0350 

19 150 300 50 0,054 33,156 1,132 20,971 3,966 0,0049 

20 150 600 50 0,186 32,285 3,557 19,094 4,191 0,0188 

21 150 900 50 0,370 23,263 6,491 17,530 3,496 0,0489 

22 150 300 130 0,052 30,167 1,159 22,049 3,835 0,0044 

23 150 600 130 0,175 25,253 3,150 17,983 3,853 0,0194 

24 150 900 130 0,353 18,064 4,795 13,548 3,215 0,0405 

25 150 300 210 0,048 26,630 0,720 14,932 3,543 0,0038 

26 150 600 210 0,177 27,333 3,542 19,906 3,738 0,0191 

27 150 900 210 0,396 21,810 6,006 15,182 3,541 0,0407 

 

4.3 Study of the effectiveness of the time and 

frequency indicators using one-way analysis 

of variance (ANOVA)  

 

The first step, we used the Lilliefor’s test to 

confirm that the population distribution was normal 

[25]. Therefore, the statistical toolbox of Matlab is 

used to calculate the Lilliefor’s test. The result is 1 if 

the test rejects the null hypothesis at the 5% 

significance level. Otherwise, it takes the value 0.  

In all cases of table 6, the test statistic k is less 

than the critical value c, so the value of h=0 indicate 

that lillietest does not reject the hypothesis at 5% 

significance level [26]. To find more accurate of p-

value, the Monte Carlo approximation is used [26]. 

 

   1p p
SE

mcreps

 
                                   (8) 

Where: p   is the estimated p-value of the hypothesis 

test, and mcreps   is the number of Monte Carlo 

replications performed. The number of Monte Carlo 

replications, mcreps is determined such that the 

Monte Carlo standard error for less than the value 

specified for Monte Carlo approximation. 
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Table 6. Lilliefor’s test (h: hypothesis test result, p: p-value, k: Test statistic, c: Critical value) 

Time Indicators 
50 100 150 

h p k c h p k c h p k c 

RMS 0,00 0,14 0,24 0,27 0,00 0,18 0,23 0,27 0,00 0,30 0,21 0,27 

Kurtosis 0,00 0,80 0,15 0,27 0,00 0,88 0,14 0,27 0,00 0,99 0,11 0,27 

Peak 0,00 0,41 0,19 0,27 0,00 0,50 0,18 0,27 0,00 0,46 0,19 0,27 

Crest factor 0,00 0,03 0,27 0,27 0,00 0,91 0,14 0,27 0,00 0,73 0,16 0,27 

Skewness 0,00 0,29 0,21 0,27 0,00 0,50 0,18 0,27 0,00 0,73 0,16 0,27 

BPFO 0,00 0,17 0,23 0,27 0,00 0,18 0,23 0,27 0,00 0,17 0,23 0,27 

 
 

Additionally, a Levene test (table 7), showed that 

samples with equal variance could not be rejected 

[27]. Thus, the ANOVA could be executed on the 

experimental data. Levene’s test, displays P-values. A 

P-value less than 0. 05 leads to rejection of the 

hypothesis of equal sigmas at the 5% significance 

level. In this case, the standard deviations are not 

significantly different from one to another. Since the 

P-value is well above 0. 05. 

When we compare multiple samples, it is usually 

to perform a one-way analysis of ANOVA. The 

ANOVA is used to test the hypothesis of equal 

population means by choosing between null 

hypothesis and alternative hypothesis. The results of 

the analysis of variance "ANOVA" for the different 

responses are given in the Table 7. The analysis is 

performed for a significance level α = 0, 05 

(confidence level of 95%). 

In this work, the analysis of variance (ANOVA) is 

used to calculate differences between two or more 

means. However, this method cannot indicate which 

of the means are statically different. Moreover, the 

Tukey’s test is introduced to give more information 

about significantly different means. Hence, to 

determine whether a given indicator is able to detect 

the evolution of bearing degradation at an early stage 

or not, we use both analysis of variance ANOVA and 

Tukey’s test. The obtained results are summarized in 

Figure 4. The circle in this plot represents the mean 

value of the groups with a 95 % confidence interval 

around the mean, whereas the line indicates the upper 

limit on the probability above which any comparison 

will be incorrectly described as significant. 

It can be seen from Fig. 5 that only the kurtosis 

and Skewness have a significant difference for two 

groups, whereas the RMS, Crest factor, BPFO and 

Peak does not show any significant difference 

between the groups. In this regard, all descriptors 

cannot estimate the difference between all groups. 

For example, The Kurtosis is able to distinguish the 

difference between the first cases 50 µm and 100 µm, 

but it is not able to check the difference between 100 

µm and 150 µm. The Skewness is able to distinguish 

between 100 µm and 150 µm but it is not able to 

check the difference between 50 µm and 100 µm.   
 

   Table 7. Levene’s test results 

Time 
indicators 

50. µm 100. µm 150. µm 
p-value 

Mean Std Dev Mean Std Dev Mean Std Dev 

RMS 0,150 0,120 0,174 0,137 0,201 0,141 0,897 

Kurtosis 15,747 4,870 25,736 4,910 26,440 4,964 0,999 

Skewness 2,616 0,364 2,832 0,488 3,709 0,292 0,364 

C-factor 15,424 2,615 16,645 4,103 17,911 2,902 0,413 

BPFO 0,0145 0,0133 0,0190 0,0165 0,0223 0,0172 0,761 

  
Table 7. ANOVA results 

 

Indicators Swg Sbg F-ratio p-Value 

RMS 0,006 0,018 0,335 0,719 

Kurtosis 321,954 24,152 13,330 0,000* 

Skewness 3,012 0,152 19,829 0,000* 

Crest factor 13,908 10,698 1,300 0,291 

Peak 4,246 2,953 1,438 0,257 

BPFO 0,0001 0,0002 0,560 0,579 
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Fig. 5. Comparison of the effectiveness of time and frequency indicators using ANOVA and Tukey’s test 

 

5. CONCLUSION  

Monitoring the evolution of bearings fault size at 

an early stage is crucial. In this paper, time and 

frequency indicators are used to estimate the variation 

of default size at a macroscopic scale.  

The method of the one-way analysis of variance 

"ANOVA alongside Tukey's multiple comparison 

tests proved to be an efficient method in selecting the 

good indicators to monitor the bearing degradation 

ranging from 50 µm to 150 µm. In this regard, the 

Skewness and Kurtosis indicators show a good ability 

to assess defectiveness in the bearings at an early 

stage; the disadvantage of other indicators such as the 

RMS, Peak, Crest factor and BPFO cannot detect the 

changes in the fault size of bearings varying from 50 

µm to 150 µm. However, the "ANOVA" seems to be 

unsuitable to compare between time indicators since 

they do not fulfill the conditions of this method.  

Finally, the procedure proposed in this paper can 

also be useful to study the efficiency of the 

parameters of other problems. 
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